

## Network Coding CITHN2002, SoSe 2024

**Tutorial 5** 

July 17, 2024

## Problem 1 Lossy wireless networks

We consider the three-node wireless relay network G = (N, H) depicted in Figure 1 and the respective induced graph G' = (N, A) in the lossy hypergraph model with orthogonal media access. For clarity, only the maximum hyperarcs are drawn in the figure.

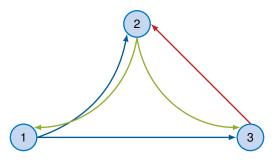



Figure 1: Three-node relay network

**Hint:** You may use the pre-printed Table 1 at the end of this problem sheet.

**a**)<sup>\*</sup> Explicitly state the set of hyperarcs  $\mathcal{H}$ .

**b)** State the set of hyperarc indices *H* by numbering the hyperarcs  $(a, B) \in \mathcal{H}$  in lexicographic ascending order, i. e., (a, B) < (a', B') if

1. 
$$a < a'$$
 or  
2.  $a = a' \land |B| < |B'|$  or  
3.  $a = a' \land |B| = |B'| \land \min B \setminus B' < \min B' \setminus B$ ,

such that  $j \equiv (a, B)$  with  $j \in H = \{1, 2, ...\}$  for all  $(a, B) \in \mathcal{H}$ .

**c)**\*

For each  $j \equiv (a, B) \in \mathcal{H}$ , state the set  $\mathcal{A}_j$  of arcs and corresponding indices  $A_j$  induced by j. Number the arcs  $(a, b) \in \mathcal{A}$  in lexicographic ascending order, i. e., (a, b) < (a', b') if

1. a < a' or 2.  $a = a' \land b < b'$ ,

such that  $k \equiv (a, b)$  with  $k \in \{1, 2, ...\}$  for all  $(a, b) \in A$ .

**d)** Draw the graph G' = (N, A) that is induced by G.

e) State the hyperarc-arc incidence matrix N.

f) State the incidence matrix M for G'.

Chair of Network Architectures and Services School of Computation, Information and Technology Technical University of Munich



Assume that each arc  $k \in A$  has unit capacity and a link error probability of  $0 \le \epsilon_k \le 1$ .

g) Determine the hyperarc capacity region

$$\mathcal{Z} = \bigcup_{\substack{\tau \geq \mathbf{0} \\ \mathbf{1}^{\mathsf{T}} \tau \leq 1}} \left\{ \mathbf{z} : z_j = \tau_a \prod_{k \in A_j} (1 - \epsilon_k) \prod_{(a,b) \equiv k \notin A_j} \epsilon_k \quad \forall j \equiv (a, B) \in \mathcal{H} \right\}.$$

h) State the hyperarc-hyperarc incidence matrix Q.

i) Determine the broadcast capacity vector y.

- **j)** Explicitly state the lossy hyperarc flow bound  $Nx \le y$ .
- **k)** Enumerate all s t cuts S and their respective capacities  $v(S_a)$  for s = 1 and t = 3.
- I) State the min-cut capacity r for a flow from s to t in dependency of  $\tau_1$  and  $\tau_2$ .

**m)** Determine  $\tau_1$  and  $\tau_2$  such that *r* is maximized.

We now consider the multicast s = 1 and  $T = \{2, 3\}$ .

- **n)** Determine the missing s T cut and its capacity.
- **o)** State the optimization problem to maximize the multicast capacity r'.

**p)** Determine the maximum multicast rate  $r'^*$  by solving the problem. Assume  $\epsilon_4 = \epsilon_5$ , otherwise the various cases are more complex.

**Hint:** It is sufficient to differentiate between cases and to express  $\tau_2$ ,  $\tau_3$  by means of  $\tau_1$ . Except for the trivial case, the expression for  $\tau_1$  is not nice.

| <b>Prof. Dr</b><br>carle@t                      | $(a,B)\in\mathcal{H}$ | <i>j</i> ≡ (a, B) | $ $ $\mathcal{A}_{j}$ | Aj | Zj | Уј |
|-------------------------------------------------|-----------------------|-------------------|-----------------------|----|----|----|
| <b>Prof. DrIng. Georg Carle</b><br>carle@tum.de |                       |                   |                       |    |    |    |
| org Carl                                        |                       |                   |                       |    |    |    |
| Ø                                               |                       |                   |                       |    |    |    |
| Stepha<br>nc@net                                |                       |                   |                       |    |    |    |
| Stephan Günther<br>nc@net.in.tum.de             |                       |                   |                       |    |    |    |
| de<br>de                                        |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
|                                                 |                       |                   |                       |    |    |    |
| ω                                               |                       |                   |                       |    |    |    |

₫