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Problem 1 Lossy wireless networks

We consider the three-node wireless relay network G = (N, H) depicted in Figure 1 and the respective
induced graph G′ = (N, A ) in the lossy hypergraph model with orthogonal media access. For clarity,
only the maximum hyperarcs are drawn in the figure.
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Figure 1: Three-node relay network

Hint: You may use the pre-printed Table 1 at the end of this problem sheet.

a)* Explicitly state the set of hyperarcs H.

See Table 1 coumn 1.

b) State the set of hyperarc indices H by numbering the hyperarcs (a, B) ∈ H in lexicographic ascending
order, i. e., (a, B) < (a′, B ′) if

1. a < a′ or

2. a = a′ ∧ |B| < |B ′| or

3. a = a′ ∧ |B| = |B ′| ∧ min B \ B ′ < min B ′ \ B,

such that j ≡ (a, B) with j ∈ H = {1, 2, ...} for all (a, B) ∈ H.

See Table 1 coumn 2.

c)*

For each j ≡ (a, B) ∈ H, state the set Aj of arcs and corresponding indices Aj induced by j. Number
the arcs (a, b) ∈ A in lexicographic ascending order, i. e., (a, b) < (a′, b ′) if

1. a < a′ or

2. a = a′ ∧ b < b ′,

such that k ≡ (a, b) with k ∈ {1, 2, ... } for all (a, b) ∈ A.

See Table 1 coulmn 3 and 4.
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d) Draw the graph G′ = (N, A ) that is induced by G.
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(Numbers next to arcs denote the arc index k ≡ (a, b) ∈ A.)

See solution of c), fourth column.

e) State the hyperarc-arc incidence matrix N.

N =



1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1



f) State the incidence matrix M for G′.

M =

 1 1 −1 0 0
−1 0 1 1 −1
0 −1 0 −1 1



Assume that each arc k ∈ A has unit capacity and a link error probability of 0 ≤ ϵk ≤ 1.

g) Determine the hyperarc capacity region

Z =
⋃

τ≥0
1T τ≤1

z : zj = τa
∏

k∈Aj

(1 − ϵk )
∏

(a,b)≡k /∈Aj

ϵk ∀j ≡ (a, B) ∈ H

 .

z =

z1
...

z7

 =



τ1(1 − ϵ1)ϵ2

τ1(1 − ϵ2)ϵ1

τ1(1 − ϵ1)(1 − ϵ2)
τ2(1 − ϵ3)ϵ4

τ2(1 − ϵ4)ϵ3

τ2(1 − ϵ3)(1 − ϵ4)
τ3(1 − ϵ5)


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h) State the hyperarc-hyperarc incidence matrix Q.

Q =



1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1



i) Determine the broadcast capacity vector y.

y = Qz =



1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1





z1

z2

z3

z4

z5

z6

z7


=



z1 + z3

z2 + z3

z1 + z2 + z3

z4 + z6

z5 + z6

z4 + z5 + z6

z7


=



τ1(1 − ϵ1)
τ1(1 − ϵ2)

τ1(1 − ϵ1ϵ2)
τ2(1 − ϵ3)
τ2(1 − ϵ4)

τ2(1 − ϵ3ϵ4)
τ3(1 − ϵ5)



j) Explicitly state the lossy hyperarc flow bound Nx ≤ y.

Nx =



1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

 =



x1

x2

x1 + x2

x3

x4

x3 + x4

x5


≤



y1

y2

y3

y4

y5

y6

y7


=



z1 + z3

z2 + z3

z1 + z2 + z3

z4 + z5

z5 + z6

z4 + z5 + z6

z7



k) Enumerate all s − t cuts S and their respective capacities v(Sa) for s = 1 and t = 3.

S1 = {1}
S2 = {1, 2}

v(S1) = y3 = z1 + z2 + z3

= τ1 ((1 − ϵ1)ϵ2 + (1 − ϵ2)ϵ1 + (1 − ϵ1)(1 − ϵ2))

= τ1(1 − ϵ1ϵ2)

v(S2) = y2 + y5 = z2 + z3 + z5 + z6

= τ1 ((1 − ϵ2)ϵ1 + (1 − ϵ1)(1 − ϵ2)) + τ2 ((1 − ϵ4)ϵ3 + (1 − ϵ3)(1 − ϵ4))

= τ1(1 − ϵ2) + τ2(1 − ϵ4)
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l) State the min-cut capacity r for a flow from s to t in dependency of τ1 and τ2.

r = min
{

v(S1), v(S2)
}

= min {τ1(1 − ϵ1ϵ2), τ1(1 − ϵ2) + τ2(1 − ϵ4)}

m) Determine τ1 and τ2 such that r is maximized.

We need to solve the optimization problem

r∗ = max
τ1,τ2≥0
τ1+τ2=1

min {τ1(1 − ϵ1ϵ2), τ1(1 − ϵ2) + τ2(1 − ϵ4)} .

In case that v(S1) ̸= v(S2) we will increase the smaller one, which might decrease the larger one. The
optimal solution is found when we either cannot further increase the value of the smaller cut or when
v(S1) = v(S2).

From the induced graph (see solution of (d)) we see that node 2 cannot contribute if ϵ4 > ϵ2. In this
case only node 1 will transmit and thus τ1 = 1 and τ2 = 0. The same is obviously true when ϵ1 = 1
since node 2 cannot receive anything from node 1 in this case.
For ϵ4 ≤ ϵ2, ϵ1 < 1, and τ1 = 1 we find that v(S1) > v(S2). We therefore increase τ2 at the cost of τ1

until v(S1) = v(S2), which is the optimal solution:

τ1 + τ2 = 1 ⇒ τ2 = 1 − τ1

v(S1) = τ1(1 − ϵ1ϵ2)

v(S2) = τ1(1 − ϵ2) + τ2(1 − ϵ4)

= τ1(ϵ4 − ϵ2) + 1 − ϵ4

v(S1) != v(S2)

τ1(1 − ϵ1ϵ2) = τ1(ϵ4 − ϵ2) + 1 − ϵ4

τ1(1 − ϵ4 − ϵ1ϵ2 + ϵ2) = 1 − ϵ4

τ1 =
1 − ϵ4

1 − ϵ4 − ϵ1ϵ2 + ϵ2

We therefore get the following solution:

τ1 =


1 ϵ1 = 1 ∨ ϵ2 ≤ ϵ4,

1 − ϵ4

1 − ϵ4 − ϵ1ϵ2 + ϵ2
ϵ2 > ϵ4.

Note that we could modify the cases such that ϵ2 < ϵ4 and ϵ2 ≥ ϵ4 without affecting the capacity.

We now consider the multicast s = 1 and T = {2, 3}.

n) Determine the missing s − T cut and its capacity.

S3 = {1, 3} with

v(S3) = y1 + y7 = z1 + z3 + z7 = τ1(1 − ϵ1) + τ3(1 − ϵ5)

Prof. Dr.-Ing. Georg Carle
carle@tum.de

Stephan Günther
nc@net.in.tum.de 4



Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

o) State the optimization problem to maximize the multicast capacity r ′.

max
τ≥0

1T τ=1

min {v(S1), v(S2), v(S3)}

p) Determine the maximum multicast rate r ′∗ by solving the problem. Assume ϵ4 = ϵ5, otherwise the
various cases are more complex.

Hint: It is sufficient to differentiate between cases and to express τ2, τ3 by means of τ1. Except for
the trivial case, the expression for τ1 is not nice.

τ1 + τ2 + τ3 = 1

v(S1) = τ1(1 − ϵ1ϵ2)

v(S2) = τ1(1 − ϵ2) + τ2(1 − ϵ4)

v(S3) = τ1(1 − ϵ1) + τ3(1 − ϵ5)

There is no valid solution, yet . . . – if somebody finds one, please notify us.
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(a, B) ∈ H j ≡ (a, B) Aj Aj zj yj

(1,{2}) 1 {(1, 2)} {1} τ1(1 − ϵ1)ϵ2 τ1(1 − ϵ1)

(1,{3}) 2 {(1, 3)} {2} τ1(1 − ϵ3)ϵ1 τ1(1 − ϵ2)

(1,{2,3}) 3 {(1, 2), (1, 3)} {1, 2} τ1(1 − ϵ1)(1 − ϵ2) τ1(1 − ϵ1ϵ2)

(2,{1}) 4 {(2, 1)} {3} τ2(1 − ϵ3)ϵ4 τ2(1 − ϵ3)

(2,{3}) 5 {(2, 3)} {4} τ2(1 − ϵ4)ϵ3 τ2(1 − ϵ4)

(2,{1,3}) 6 {(2, 1), (2, 3)} {3, 4} τ2(1 − ϵ3)(1 − ϵ4) τ2(1 − ϵ3ϵ4)

(3,{2}) 7 {(3, 2)} {5} τ3(1 − ϵ5) τ3(1 − ϵ5)

Table 1: Fill in values from different subproblems.
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