

Network Coding CITHN2002, SoSe 2024

Tutorial 5

July 17, 2024

Problem 1 Lossy wireless networks

We consider the three-node wireless relay network G = (N, H) depicted in Figure 1 and the respective induced graph G' = (N, A) in the lossy hypergraph model with orthogonal media access. For clarity, only the maximum hyperarcs are drawn in the figure.

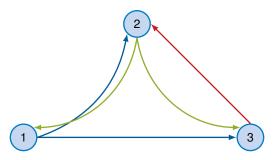


Figure 1: Three-node relay network

Hint: You may use the pre-printed Table 1 at the end of this problem sheet.

a)* Explicitly state the set of hyperarcs \mathcal{H} .

See Table 1 coumn 1.

b) State the set of hyperarc indices *H* by numbering the hyperarcs $(a, B) \in \mathcal{H}$ in lexicographic ascending order, i. e., (a, B) < (a', B') if

1.
$$a < a'$$
 or
2. $a = a' \land |B| < |B'|$ or
3. $a = a' \land |B| = |B'| \land \min B \setminus B' < \min B' \setminus B$,

such that $j \equiv (a, B)$ with $j \in H = \{1, 2, ...\}$ for all $(a, B) \in \mathcal{H}$.

See Table 1 coumn 2.

c)*

For each $j \equiv (a, B) \in \mathcal{H}$, state the set \mathcal{A}_j of arcs and corresponding indices \mathcal{A}_j induced by j. Number the arcs $(a, b) \in \mathcal{A}$ in lexicographic ascending order, i. e., (a, b) < (a', b') if

1. a < a' or 2. $a = a' \land b < b'$,

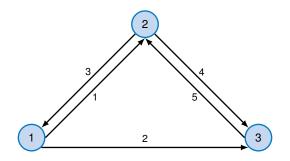
such that $k \equiv (a, b)$ with $k \in \{1, 2, ...\}$ for all $(a, b) \in A$.

See Table 1 coulmn 3 and 4.

Prof. DrIng. Georg Carle	Stephan Günther
carle@tum.de	nc@net.in.tum.de

Chair of Network Architectures and Services School of Computation, Information and Technology Technical University of Munich

d) Draw the graph G' = (N, A) that is induced by G.



(Numbers next to arcs denote the arc index $k \equiv (a, b) \in A$.)

See solution of c), fourth column.

e) State the hyperarc-arc incidence matrix N.

	1	0	0	0	0]	
	0	1	0	0	0	
	1	1	0	0	0	
N =	0	0	1	0	0	
	0	0	0	1	0	
	0	0	1	1	0	
	0	0 1 0 0 0	0	0	1]	

f) State the incidence matrix M for G'.

	1	1	-1	0	0]
M =	-1	0	1	1	-1
M =	0	-1	0	-1	1

Assume that each arc $k \in A$ has unit capacity and a link error probability of $0 \le \epsilon_k \le 1$.

g) Determine the hyperarc capacity region

$$\mathcal{Z} = \bigcup_{\substack{\tau \ge \mathbf{0} \\ \mathbf{1}^{\tau} \tau \le 1}} \left\{ \mathbf{z} : z_j = \tau_a \prod_{k \in A_j} (1 - \epsilon_k) \prod_{(a,b) \equiv k \notin A_j} \epsilon_k \quad \forall j \equiv (a, B) \in \mathcal{H} \right\}.$$

$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1 \\ \vdots \\ \mathbf{Z}_7 \end{bmatrix} = \begin{bmatrix} \tau_1 (1 - \epsilon_1)\epsilon_2 \\ \tau_1 (1 - \epsilon_2)\epsilon_1 \\ \tau_1 (1 - \epsilon_1)(1 - \epsilon_2) \\ \tau_2 (1 - \epsilon_3)\epsilon_4 \\ \tau_2 (1 - \epsilon_4)\epsilon_3 \\ \tau_2 (1 - \epsilon_3)(1 - \epsilon_4) \\ \tau_3 (1 - \epsilon_5) \end{bmatrix}$$

Stephan Günther nc@net.in.tum.de

h) State the hyperarc-hyperarc incidence matrix Q.

	[1	0	1	0	0	0	0
	0	1	1	0	0	0	0
	1	1	1	0	0	0	0
Q =	0	0	0	1	0	1	0
	0	0	0	0	1	1	0
	0	0	0	1	1	1	0
	0	0 1 0 0 0	0	0	0	0	1

i) Determine the broadcast capacity vector y.

	[1	0	1	0	0	0	0	$\begin{bmatrix} z_1 \end{bmatrix}$		$Z_1 + Z_3$		$\begin{bmatrix} \tau_1(1-\epsilon_1) \end{bmatrix}$
	0	1	1	0	0	0	0	Z 2		$Z_2 + Z_3$		$\tau_1(1-\epsilon_2)$
	1	1	1	0	0	0	0	<i>z</i> ₃		$Z_1 + Z_2 + Z_3$		$ au_1(1-\epsilon_1\epsilon_2)$
y = Qz =	0	0	0	1	0	1	0	Z4	=	$Z_4 + Z_6$	=	$\tau_2(1-\epsilon_3)$
	0	0	0	0	1	1	0	<i>z</i> 5		$Z_5 + Z_6$		$\tau_2(1-\epsilon_4)$
	0	0	0	1	1	1	0	<i>z</i> 6		$Z_4 + Z_5 + Z_6$		$ au_2(1-\epsilon_3\epsilon_4)$
	0	0	0	0	0	0	1	Z 7		Z 7		$\tau_3(1-\epsilon_5)$

j) Explicitly state the lossy hyperarc flow bound $Nx \le y$.

	[1	0	0	0	0			x ₁		y ₁		$\begin{bmatrix} z_1 + z_3 \end{bmatrix}$
	0	1	0	0	0	$\begin{bmatrix} x_1 \end{bmatrix}$		х ₂		y ₂		$Z_2 + Z_3$
	1	1	0	0	0	x ₂		$x_1 + x_2$		y 3		$Z_1 + Z_2 + Z_3$
N x =	0	0	1	0	0	<i>x</i> 3	=	х з	\leq	y 4	=	<i>Z</i> ₄ + <i>Z</i> ₅
	0	0	0	1	0	<i>x</i> ₄		<i>x</i> 4		y 5		$Z_5 + Z_6$
	0	0	1	1	0	<i>x</i> 5		$x_3 + x_4$		y 6		$Z_4 + Z_5 + Z_6$
	0	0	0	0	1			x 5		y 7		Z7

k) Enumerate all s - t cuts S and their respective capacities $v(S_a)$ for s = 1 and t = 3.

$$\begin{split} S_1 &= \{1\} \\ S_2 &= \{1,2\} \\ \nu(S_1) &= y_3 = z_1 + z_2 + z_3 \\ &= \tau_1 \left((1 - \epsilon_1)\epsilon_2 + (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)(1 - \epsilon_2) \right) \\ &= \tau_1 (1 - \epsilon_1\epsilon_2) \\ \nu(S_2) &= y_2 + y_5 = z_2 + z_3 + z_5 + z_6 \\ &= \tau_1 \left((1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)(1 - \epsilon_2) \right) + \tau_2 \left((1 - \epsilon_4)\epsilon_3 + (1 - \epsilon_3)(1 - \epsilon_4) \right) \\ &= \tau_1 (1 - \epsilon_2) + \tau_2 (1 - \epsilon_4) \end{split}$$

Stephan Günther nc@net.in.tum.de

I) State the min-cut capacity r for a flow from s to t in dependency of τ_1 and τ_2 .

$$r = \min\{v(S_1), v(S_2)\} = \min\{\tau_1(1 - \epsilon_1 \epsilon_2), \tau_1(1 - \epsilon_2) + \tau_2(1 - \epsilon_4)\}$$

m) Determine τ_1 and τ_2 such that *r* is maximized.

We need to solve the optimization problem

$$r^* = \max_{\substack{\tau_1, \tau_2 \geq 0 \\ \tau_1 + \tau_2 = 1}} \min\left\{\tau_1(1 - \epsilon_1 \epsilon_2), \tau_1(1 - \epsilon_2) + \tau_2(1 - \epsilon_4)\right\}.$$

In case that $v(S_1) \neq v(S_2)$ we will increase the smaller one, which might decrease the larger one. The optimal solution is found when we either cannot further increase the value of the smaller cut or when $v(S_1) = v(S_2)$.

From the induced graph (see solution of (d)) we see that node 2 cannot contribute if $\epsilon_4 > \epsilon_2$. In this case only node 1 will transmit and thus $\tau_1 = 1$ and $\tau_2 = 0$. The same is obviously true when $\epsilon_1 = 1$ since node 2 cannot receive anything from node 1 in this case.

For $\epsilon_4 \leq \epsilon_2$, $\epsilon_1 < 1$, and $\tau_1 = 1$ we find that $v(S_1) > v(S_2)$. We therefore increase τ_2 at the cost of τ_1 until $v(S_1) = v(S_2)$, which is the optimal solution:

$$\tau_{1} + \tau_{2} = 1 \implies \tau_{2} = 1 - \tau_{1}$$

$$v(S_{1}) = \tau_{1}(1 - \epsilon_{1}\epsilon_{2})$$

$$v(S_{2}) = \tau_{1}(1 - \epsilon_{2}) + \tau_{2}(1 - \epsilon_{4})$$

$$= \tau_{1}(\epsilon_{4} - \epsilon_{2}) + 1 - \epsilon_{4}$$

$$v(S_{1}) \stackrel{!}{=} v(S_{2})$$

$$\tau_{1}(1 - \epsilon_{1}\epsilon_{2}) = \tau_{1}(\epsilon_{4} - \epsilon_{2}) + 1 - \epsilon_{4}$$

$$\tau_{1}(1 - \epsilon_{4} - \epsilon_{1}\epsilon_{2} + \epsilon_{2}) = 1 - \epsilon_{4}$$

$$\tau_{1} = \frac{1 - \epsilon_{4}}{1 - \epsilon_{4} - \epsilon_{1}\epsilon_{2} + \epsilon_{2}}$$

We therefore get the following solution:

$$\tau_{1} = \begin{cases} 1 & \epsilon_{1} = 1 \lor \epsilon_{2} \le \epsilon_{4}, \\ \frac{1 - \epsilon_{4}}{1 - \epsilon_{4} - \epsilon_{1}\epsilon_{2} + \epsilon_{2}} & \epsilon_{2} > \epsilon_{4}. \end{cases}$$

Note that we could modify the cases such that $\epsilon_2 < \epsilon_4$ and $\epsilon_2 \ge \epsilon_4$ without affecting the capacity.

We now consider the multicast s = 1 and $T = \{2, 3\}$.

n) Determine the missing s - T cut and its capacity.

 $S_3 = \{1, 3\}$ with

$$v(S_3) = y_1 + y_7 = z_1 + z_3 + z_7 = \tau_1(1 - \epsilon_1) + \tau_3(1 - \epsilon_5)$$

Stephan Günther nc@net.in.tum.de

o) State the optimization problem to maximize the multicast capacity r'.

```
\max_{\substack{\tau \ge 0 \\ \mathbf{1}^{\mathsf{T}} \tau = 1}} \min \left\{ v(S_1), v(S_2), v(S_3) \right\}
```

p) Determine the maximum multicast rate r'^* by solving the problem. Assume $\epsilon_4 = \epsilon_5$, otherwise the various cases are more complex.

Hint: It is sufficient to differentiate between cases and to express τ_2 , τ_3 by means of τ_1 . Except for the trivial case, the expression for τ_1 is not nice.

$$\tau_{1} + \tau_{2} + \tau_{3} = 1$$

$$v(S_{1}) = \tau_{1}(1 - \epsilon_{1}\epsilon_{2})$$

$$v(S_{2}) = \tau_{1}(1 - \epsilon_{2}) + \tau_{2}(1 - \epsilon_{4})$$

$$v(S_{3}) = \tau_{1}(1 - \epsilon_{1}) + \tau_{3}(1 - \epsilon_{5})$$

There is no valid solution, yet ... – if somebody finds one, please notify us.

Chair of Network Architectures and Services School of Computation, Information and Technology Technical University of Munich	
--	--

5

$(a,B)\in\mathcal{H}$	$j \equiv (a, B)$	\mathcal{A}_{j}	A_j	Zj	Уј
(1,{2})	1	{(1,2)}	{1}	$ au_1(1-\epsilon_1)\epsilon_2$	$ au_1(1-\epsilon_1)$
(1,{3})	2	{(1,3)}	{2 }	$ au_1(1-\epsilon_3)\epsilon_1$	$ au_1(1-\epsilon_2)$
(1,{2,3})	3	{(1,2), (1,3)}	{1,2}	$ au_1(1-\epsilon_1)(1-\epsilon_2)$	$ au_1(1-\epsilon_1\epsilon_2)$
(2,{1})	4	{(2,1)}	{3 }	$ au_2(1-\epsilon_3)\epsilon_4$	$ au_2(1-\epsilon_3)$
(2,{3})	5	{(2,3)}	{4}	$ au_2(1-\epsilon_4)\epsilon_3$	$ au_2(1-\epsilon_4)$
(2,{1,3})	6	$\{(2,1),(2,3)\}$	{3,4}	$ au_2(1-\epsilon_3)(1-\epsilon_4)$	$ au_2(1-\epsilon_3\epsilon_4)$
(3,{2})	7	$\{(3, 2)\}$	{5}	$ au_3(1-\epsilon_5)$	$ au_{3}(1-\epsilon_{5})$

 Table 1: Fill in values from different subproblems.