

Network Coding IN2315, WiSe 2021/22

Tutorial 1

October 25, 2021

Problem 1 Finite extension fields

Given the finite field \mathbb{F}_{p} , we consider the finite extension field

$$F_q[x] = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{F}_p \right\}$$
(1)

with $q = p^n$ elements. Specifically, let p = 3 and n = 2.

a)^{*} Find a generator (primitive element) of \mathbb{F}_3 .

As we know that there is a primitive element and that $0, 1 \in \mathbb{F}_3$ cannot be generators since those elements are idempotent, the generator must be 2, which is unique in this case.

b) Determine the inverse elements of the multiplicative group of \mathbb{F}_3 , i. e., given $a \in \mathbb{F}_3 \setminus \{0\}$ determine $b \in \mathbb{F}_3 \setminus \{0\}$ such that $a \cdot b = 1$ (and thus a = 1/b).

- 1 is the neutral element and therefore self-inverse
- $(2 \cdot 2) \mod 3 = 1$, i. e., 2 is also self-inverse

c) Determine the inverse elements of the additive group of \mathbb{F}_3 , i. e., given $a \in \mathbb{F}_3$ determine $b \in \mathbb{F}_3$ such that a + b = 0 (and thus a = -b).

 $\begin{array}{ll} (0+0) \mod 3 = 0 & \Rightarrow -0 = 0 \\ (1+2) \mod 3 = 0 & \Rightarrow -1 = 2 \\ (2+1) \mod 3 = 0 & \Rightarrow -2 = 1 \end{array}$

d)^{*} Enumerate all $a \in F_q[x]$.

There are $q = 3^2 = 9$ elements:

$$F_q[x] = \{ \begin{array}{ccc} 0, & 1, & 2, \\ x, & x+1, & x+2, \\ 2x, & 2x+1, & 2x+2 \} \end{cases}$$

e)^{*} Determine all reduction polynomials such that $F_q[x]$ forms a finite extension field.

The reduction polynomials must be of degree 2, i. e., candidates

$$a \in A = \{ x^2, x^2 + 1, x^2 + 2, \\ x^2 + x, x^2 + x + 1, x^2 + x + 2, \\ x^2 + 2x, x^2 + x + 1, x^2 + x + 2, \\ 2x^2, 2x^2 + 1, 2x^2 + 2, \\ 2x^2 + x, 2x^2 + x + 1, 2x^2 + x + 2, \\ 2x^2 + 2x, 2x^2 + 2x + 1, 2x^2 + 2x + 2 \}$$

In order to obtain the set *B* of reducible polynomials of degree 2, it is sufficient to consider all polynomials of degree 1 in $F_q[x]$:

•	x	<i>x</i> + 1	<i>x</i> + 2	2 <i>x</i>	2 <i>x</i> + 1	2 <i>x</i> + 2
x	x ²	_	_	_	_	_
<i>x</i> + 1	$x^2 + x$	$x^2 + 2x + 1$	_	_	_	_
<i>x</i> + 2	$x^2 + 2x$	$x^{2} + 2$	$x^2 + x + 1$	_	_	_
2 <i>x</i>	2 <i>x</i> ²	$2x^2 + 2x$	$2x^2 + x$	<i>x</i> ²	_	-
2 <i>x</i> + 1	$2x^2 + x$	$2x^2 + 1$	$2x^2 + 2x + 2$	$x^{2} + 2x$	$x^2 + x + 1$	_
2 <i>x</i> + 2	$2x^2 + 2x$	$2x^2 + x + 2$	$2x^2 + 1$	$x^{2} + x$	$x^{2} + 2$	$x^2 + 2x + 1$

Suitable reduction polynomials are therefore $r \in A \setminus B$, i.e.,

$$r \in \{x^2 + 1, x^2 + x + 2, x^2 + 2x + 2, 2x^2 + 2, 2x^2 + x + 1, 2x^2 + 2x + 1\}.$$

f) Take two reduction polynomials $r_1 \neq r_2$ and show that $(a \cdot b) \mod r_1 \neq (a \cdot b) \mod r_2$ for $a, b \in F_q[x]$ in general.

We choose a = x + 2, b = 2x + 2, $r_1 = x^2 + 1$, and $r_2 = 2x^2 + 2x + 1$. Then we obtain

$$a \cdot b = 2x^2 + 1,$$

 $(2x^2 + 1) \mod(x^2 + 1) = 2, \text{ and}$
 $(2x^2 + 1) \mod(2x^2 + 2x + 1) = x.$

From now on we assume $r(x) = x^2 + 1$.

g)* State the addition and multiplication tables for $F_q[x]$ subject to $r(x) = x^2 + 1$.

+	0		1		2		x		x + 1		x + 2		2 <i>x</i>		2x +	1	2x + 2	
0	0 1			2 x			<i>x</i> + 1		<i>x</i> + 2		2 <i>x</i>		2 <i>x</i> + 1		2x + 2			
1	1		2		0		<i>x</i> + 1		<i>x</i> + 2		x		2 <i>x</i> + 1		2 <i>x</i> + 2		2 <i>x</i>	
2	2		0		1		<i>x</i> + 2		x		<i>x</i> + 1		2x + 2		2 <i>x</i>		2 <i>x</i> + 1	
x	x		x	<i>x</i> + 1 <i>x</i> +		2 2 <i>x</i>			2x + 1		2x + 2		0		1		2	
<i>x</i> + 1	x	+ 1	X	+ 2	x		$2x + \frac{1}{2}$	1	2x + 2	2	2 <i>x</i>		1		2		0	
<i>x</i> + 2	x	+ 2	X		<i>x</i> + 1		2x + 2	2	2 <i>x</i>		2x +	1	2		0		1	
2 <i>x</i>	2	x	2	x + 1	2 <i>x</i> +	2	0		1		2		x		x + 1		<i>x</i> + 2	
2 <i>x</i> + 1	2x + 1 $2x + 2$		x + 2	2 <i>x</i>	2 <i>x</i> 1			2 0		0		<i>x</i> + 1		<i>x</i> + 2		X		
2x + 2	2	X +	2 2	x	2 <i>x</i> +	1	2		0		1		x + 2		x		<i>x</i> + 1	
		0	1	2		x		x	+ 1	x	+ 2	2)	(2)	x + 1	2>	(+2	
	0	0	0	0		0		0		0		0		0		0		
	1	0	1	2		x		x	+ 1	x	+ 2	2)	(2)	x + 1	2)	(+2	
	2	0	2	1		<mark>2</mark> x	(2)	(+2	2;	x + 1	x		x	+ 2	x	+ 1	
	x	0	X	2	x	2		x	+ 2	2)	x + 2	1		x	+ 1	2)	(+ 1	
<i>X</i> +	1	0	X + ⁻	1 2	<i>x</i> + 2	x ·	+ 2	2)	¢	1		2)	(+1	2		x		
<i>X</i> +	2	0	<i>x</i> + 2	2 2	<i>x</i> + 1	<mark>2</mark> x	(+2	1		x		x	+ 1	2)	x	2		
2	x	0	2 <i>x</i>	x		1		2)	(+ 1	x	+ 1	2		2)	x + 2	x	+ 2	
2 <i>x</i> +	1	0	2x +	-1 <i>x</i>	+ 2	x ·	+ 1	2		2)	x	2)	(+2	x		1		
~																	x	

h) For all $a \in F_q[x]$, determine the additive inverse element, i. e., $b \in F_q[x]$: a + b = 0. Note that we can write b = -a.

i) Determine a generator g for $F_q[x]$.

We have to check all elements $a \in F_q[x]$ wether they are a generator. We try a = (x + 2) and prove that it can generate all elements of $F_q[x]$:

$$(x + 2)^{0} = 1$$

$$(x + 2)^{1} = x + 2$$

$$(x + 2)^{2} = x$$

$$(x + 2)^{3} = 2x + 2$$

$$(x + 2)^{4} = 2$$

$$(x + 2)^{5} = 2x + 1$$

$$(x + 2)^{6} = 2x$$

$$(x + 2)^{7} = x + 1$$

j) State the log and antilog tables for $F_q[x]$ subject to $r(x) = x^2 + 1$ and g(x).

Stephan Günther, Jonas Andre nc@net.in.tum.de

With the solution of the previous subproblem we can simply fill the tables:

	А		L
0	1	1	0
1	<i>x</i> + 2	2	4
2	x	x	2
3	2 <i>x</i> + 2	<i>x</i> + 1	7
4	2	<i>x</i> + 2	1
5	2 <i>x</i> + 1	2 <i>x</i>	6
6	2 <i>x</i>	2x + 1	5
7	<i>x</i> + 1	2 <i>x</i> + 2	3

k) Compute the following multiplications via the log table approach and validate the result with the multiplication table

$$(2x + 2)(x + 1) =$$

 $(x + 1)(2x) =$

$$(2x + 2)(x + 1) = A(L(2x + 2) + L(x + 1)) = A(3 + 7) = A(2) = x$$
$$(x + 1)(2x) = A(L(x + 1) + L(2x)) = A(7 + 6) = A(5) = 2x + 1$$

Problem 2 Implementation (homework)

For this problem, use the finite extension field from the previous problem, i. e. p = 3, n = 2, $r(x) = x^2 + 1$, and the generator g(x) you have previously determined.

a) Implement both the log table algorithm and the full table approach (creating a two-dimensional array with all possible multiplication results) in a programming language of your choice.

b) Benchmark your algorithms, i.e., determine the average execution time per multiplication, and explain the results.