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Networks as graphs
Networks as graphs

(Wired) Networks can be modeled as abstract graphs.

Information flow in networks with routing and forwarding can be modeled as
(multi-)commodity flow problem.

Gives nice problems (flow optimization problems) and algorithms (Dijkstra,
Bellman-Ford, etc.).

Special properties of “Information” (arbitrarily reproducible, coded represen-
tation, etc.) are not taken into account in the standard commodity model.
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Networks as graphs TI-ITI

e The set of nodes is givenby N = {1, ..., n}
e The set of arc indices is given by A = {1,2,...,m}

e Each arcindex j € A represents an ordered pair of nodes
e We therefore write j = (a, b)

e The set of arcs is given by A = {(a,b) | Ilink froma € Nto b € N}

Important structures

e path (directed, undirected)
e tree (directed, undirected)
e cycle (directed, undirected)

Note: We assume G is connected, i. e., there exists an undirected path between any pair of nodes.
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Networks as graphs TI-ITI

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.
e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).
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Networks as graphs

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.
e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).

N={1,23}

1 3
O—=0—F=0 A={(1,2.(2.1).2.9.3.2)
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Networks as graphs TI-ITI

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.
e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).

N={1,23}

1 3
O—=0—F=0 A={(1,2.(2.1).2.9.3.2)
D

o |

3
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Networks as graphs

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.
e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).

N={1,23}

1 3
O—=0—F=0 A={(1,2.(2.1).2.9.3.2)
D

o |

3

N=1{1234}
A={(1,2),(2,8),(3,1),(3,4),(4,2)}
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Networks as graphs

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.
e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).

1 3 N=1{1,2,3}
@‘*—/@O@z 7 A={(1.2,2.1).23).6.2)}
]
N=1{1,2,3 4}

4
103 7a
25C 9

AN

A={(1,2),(2.3).(3,1),(3,4), (4.2}
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Networks as graphs

Examples

e Enumeration of arcs is arbitrary but must be fixed for a given network.

e Convention: use lexicographic order, i.e., (2,1) < (2,3) < (3,2).

o |
S

4
103 7a
25C 9

6

©)

N={1,23}
A={(1,2),(2,1),(2,3),(3,2)}

N=1{1234}
A={(1,2),(2,8),(3,1),(3,4),(4,2)}

N=1{1,234587}
A={(1,2),(1,3),(2,4),(2,6),
(3,4),(3,7),(4,5),(5,6),(5,7)}
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Networks as graphs TI-ITI

Definition: incidence matrix M
Given G = (N, A), we define the incidence matrix M = (m;) € {—1,0,1}N X4l where vi € Nandj € A

1 arc j leaves node i,
mj =< —1 arc jenters node i,
0  otherwise.
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Networks as graphs

Definition: incidence matrix M
Given G = (N, A), we define the incidence matrix M = (m;) € {—1,0,1}N X4l where vi € Nandj € A

1 arc j leaves node i,
mj =< —1 arc jenters node i,
0  otherwise.

1 0-1 0 0
-1 1 0 0—1
M= 0—1 1 1 0
0 0 0—1 1
110 0 0 0 0 0 0
-1 0 1 1 0 0 0 0 0
0—-1 0 0 1 1 0 0 0
M = 0 0—-1 0—-1 0 1 0 0
00 0 0 0 0—1 1 1
00 0-1 0 0 0—1 0
00 0 0 0—1 0 0-—1
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Networks as graphs

Definition: undirected cycles in connected graphs
An undirected cycle C C A is defined as vector ¢ € {—1,0,1}! where

1 if j is traversed in forward direction,
¢ =< —1 ifjis traversed in backward direction,
0  otherwise.

The set of all cycles is denoted by C.

BT IR L
% Proof via undirected tree in G, adding any further arc creates a cycle
® Number of linearly independent undirected cycles
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Networks as graphs

Definition: undirected cycles in connected graphs
An undirected cycle C C A is defined as vector ¢ € {—1,0,1}! where

1 if j is traversed in forward direction,
¢ =« —1 |ifjis traversed in backward direction,
0  otherwise.

The set of all cycles is denoted by C.

Definition: fundamental subspaces of M (G is connected)
null M" = span{1}'
nullM =span{c:C € C}

T,
% Proof via undirected tree in G, adding any further arc creates a cycle
® Number of linearly independent undirected cycles
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Networks as graphs

Definition: undirected cycles in connected graphs
An undirected cycle C C A is defined as vector ¢ € {—1,0,1}! where

1 if j is traversed in forward direction,
¢ =« —1 |ifjis traversed in backward direction,
0  otherwise.

The set of all cycles is denoted by C.

Definition: fundamental subspaces of M (G is connected)
null M" = span{1}'
nullM =span{c:C € C}

Dimensions:

o rankM=n—12
o dimnullM" =1

o dimnulM=m—n+13

BT IR L
% Proof via undirected tree in G, adding any further arc creates a cycle
® Number of linearly independent undirected cycles
Chapter 5: Models — Networks as graphs
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Networks as graphs TI-ITI

Examples: nullspace and cycles
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Networks as graphs TI-ITI

Examples: nullspace and cycles

O=0=0  weoweff]]
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Networks as graphs

Examples: nullspace and cycles

1 3
O—0—]—0
1 e 5

o |

3

null M = span { [
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Networks as graphs

Examples: nullspace and cycles

1 3
O—0—]—0
1 e 5

o |

3

null M = span { [
null M = span { |:

Chapter 5: Models — Networks as graphs

59



Networks as graphs
Examples: nullspace and cycles
O—00—0
2 4
1
. (©)
W’
4
13 7 8
. ¢

&

null M = span { [
null M = span { |:
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Networks as graphs

Examples: nullspace and cycles

1
nullM=span{[é:| {

0

1
nuIIM=span{ {i} , [

0

null M = span -
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Flow problems
Minimum cost flow problem
Maximum s-t flow problem
Min-cut and its capacity
Minimum cost maximum s—t flow problem

Multicommaodity flow problems
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Flow problems

e The flow vector X =[x, ..., xn]" represents the amount of commodity (information) on each arc.
e The source vector d = [dh, ..., dy]" represents the amount of commodity (information) that any node injects or consumes.
e Multiple information flows can be handled as a single commodity for routing / forwarding if they are

e destined for a single common destination and
e originate from a single common source.
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Flow problems

e The flow vector X =[x, ..., xn]" represents the amount of commodity (information) on each arc.
e The source vector d = [dh, ..., dy]" represents the amount of commodity (information) that any node injects or consumes.
e Multiple information flows can be handled as a single commodity for routing / forwarding if they are

e destined for a single common destination and
e originate from a single common source.

1. Nonnegativity of flows

x>0 = x>0 VieA
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Flow problems

The flow vector X = [x1, ..., xn]" represents the amount of commodity (information) on each arc.

The source vector d = [dy, ..., dn]" represents the amount of commaodity (information) that any node injects or consumes.

Multiple information flows can be handled as a single commodity for routing/forwarding if they are

e destined for a single common destination and
e originate from a single common source.

Nonnegativity of flows

Flow conservation law (Kirchhoff current law)

Mx =d =

& x>0 VieA

ST xi— > xi=d VieEN

(i)EA €A
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Flow problems

e The flow vector X =[x, ..., xn]" represents the amount of commodity (information) on each arc.
e The source vector d = [dh, ..., dy]" represents the amount of commodity (information) that any node injects or consumes.
e Multiple information flows can be handled as a single commodity for routing / forwarding if they are

e destined for a single common destination and

e originate from a single common source.
1. Nonnegativity of flows

x>0 = x>0 VieA
2. Flow conservation law (Kirchhoff current law)
Mx=d < ST xi— > xi=d VieEN

e FCL cannot be satisfied if 17d # 0 since 17M = 0.

(i)eA () €A
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Flow problems

The flow vector x = [x1, ..., Xm]' represents the amount of commodity (information) on each arc.
The source vector d = [dy, ..., dn]" represents the amount of commaodity (information) that any node injects or consumes.

Multiple information flows can be handled as a single commodity for routing/forwarding if they are
e destined for a single common destination and
e originate from a single common source.

Nonnegativity of flows

x>0 = x>0 VieA
Flow conservation law (Kirchhoff current law)

Mx=d < ST xi— > xi=d VieEN
(ij)EA (A
e FCL cannot be satisfied if 17d # 0 since 17M = 0.
e FCL contains exactly one redundant constraint since rank M = n — 1 (if graph is connected).
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Flow problems

The flow vector x = [x1, ..., Xm]' represents the amount of commodity (information) on each arc.
The source vector d = [dy, ..., dn]" represents the amount of commaodity (information) that any node injects or consumes.

Multiple information flows can be handled as a single commodity for routing/forwarding if they are
e destined for a single common destination and
e originate from a single common source.

Nonnegativity of flows

x>0 = x>0 VieA
Flow conservation law (Kirchhoff current law)

Mx = d = ST xi— > xi=d VieEN
(i)eA (i) €A

e FCL cannot be satisfied if 17d # 0 since 1TM = 0.

e FCL contains exactly one redundant constraint since rank M = n — 1 (if graph is connected).

® Flows along directed cycles are independent of d, i. e., flows that satisfy Mx = 0, x > 0.
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Flow problems

Example 1: Diamond network froms =1tot =4

® Incidence matrix and source vector:

e Feasible flows for M, d:

e Flow solution(s) (Unique? How many solutions?)

F(M,d)={x:Mx=d x>0}

Chapter 5: Models — Flow problems



Flow problems

Example 1: Diamond network froms =1tot =4

® Incidence matrix and source vector:

e Feasible flows for M, d:

e Flow solution(s) (Unique? How many solutions?)

o xT =[11010]

F(M,d)={x:Mx=d x>0}
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Flow problems

Example 1: Diamond network froms =1tot =4

® Incidence matrix and source vector:

e Feasible flows for M, d:

F(M,d)={x:Mx=d x>0}

e Flow solution(s) (Unique? How many solutions?)
o xT =[11010]
L] xT=[11010]+a[111oo]+ﬂ[01011],a,,820
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Flow problems TI-ITI

Example 2: Extended butterfly froms=1tot=8

e Incidence matrix and source vector:

—~o-o0o0ocoo

e Feasible flows for M, d:
F(M,d) = {x:Mx=d,x >0}
e Flow solution(s) (Unique? How many?)
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Flow problems TI-ITI

Example 2: Extended butterfly froms=1tot=8

e Incidence matrix and source vector:

—~o-o0o0ocoo

e Feasible flows for M, d:
F(M,d) = {x:Mx=d,x >0}
e Flow solution(s) (Unique? How many?)

o x' =[10010000010]
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Flow problems TI-ITI

Example 2: Extended butterfly froms=1tot=8

e Incidence matrix and source vector:

—~o-o0o0ocoo

e Feasible flows for M, d:
F(M,d) = {x:Mx=d,x >0}
e Flow solution(s) (Unique? How many?)

o x' =[10010000010]
o x" =[01001010101]
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Flow problems

Example 2: Extended butterfly froms=1tot=8

e Incidence matrix and source vector:

—~o-o0o0ocoo

e Feasible flows for M, d:
F(M,d) = {x:Mx=d,x >0}
e Flow solution(s) (Unique? How many?)

o x' =[10010000010]
o x" =[01001010101]
. xT=A[10010000010]+(1—>\)[01001010101],/\e[0,1]
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Flow problems TI-ITI

Example 2: Extended butterfly froms=1tot=8

e Incidence matrix and source vector:

—~o-o0o0ocoo

e Feasible flows for M, d:
F(M,d) = {x:Mx=d,x >0}
e Flow solution(s) (Unique? How many?)

o x' =[10010000010]
o x" =[01001010101]
. xT=A[10010000010]+(1—>\)[01001010101],/\e[0,1]
L]
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Flow problems TI-ITI

Example 3: Flows from multiple sources to a single destination

e Incidence matrix and source vector:

coocooo =~
coococo-o=
cooco-o=o
co—-ocoo=o

|
cooco—~-o00o
o—-ocooco-o0o
coo-~—~o0o00o
co-—~o0o0o0o0
~—2ocoococo0o

Q

Il
rOOO 2

e Feasible flows for M, d
F(M,d)={x:Mx=d,x >0}

e Flow solution(s) (Unique? How many?)
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Flow problems TI-ITI

Example 3: Flows from multiple sources to a single destination

e Incidence matrix and source vector:

coocooo =~
coococo-o=
cooco-o=o
co—-ocoo=o

|
cooco—~-o00o
o—-ocooco-o0o
coo-~—~o0o00o
co-—~o0o0o0o0
~—2ocoococo0o

Q

Il
rOOO 2

e Feasible flows for M, d
F(M,d)={x:Mx=d,x >0}

e Flow solution(s) (Unique? How many?)

e x=[01011121122]
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Flow problems TI-ITI

Example 3: Flows from multiple sources to a single destination

e Incidence matrix and source vector:

coocooo =~
coococo-o=
cooco-o=o
co—-ocoo=o

|
cooco—~-o00o
o—-ocooco-o0o
coo-~—~o0o00o
co-—~o0o0o0o0
~—2ocoococo0o

Q

Il
rOOO 2

e Feasible flows for M, d
F(M,d)={x:Mx=d,x >0}

e Flow solution(s) (Unique? How many?)

e x=[01011121122]
L]
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Flow problems

Definition: feasible flow region

Given the incidence matrix M of a connected graph G = (N, A) and a source vector d > 0, the feasible flow region is given by

F(M,d) = {x:Mx=d,x >0},
which is

e aclosed' polyhedral® convex® set,
e nonempty if 17d = 0 (and G is connected),

e bounded* if G is acyclic (contains no directed cycles), i.e., F(M,0) = {0},

e and, in general, contains infinitely many solutions.

Asset X is closed if it contains all ts limit points.

A'set X is a polyhedron if it is defined by a finite number of affine (in)equalities, i.e., X' = {x : Ax > b}.
Asset X is convex if for any two points x, y € X and any real scalar X € [0, 1, Ax + (1 — \)y € X.
Asset X is bounded if it is contained in some ball around the origin, i.e.. X C B, (0) for some r > 0.
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Minimum cost flow problem TI-ITI

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: ¢ = [cy, ... ,cm]T

min ¢'x
s.t. Mx=d
x>0
Capacitated minimum cost flow problem
z=[z,..,2n]' maximum flow on each arc
min ¢'x
s.t. Mx=d
x<z
x>0

® Not all flow solutions to these two problems describe shortest paths, but at least one does.
Chapter 5: Models — Flow problems



Minimum cost flow problem

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: ¢ = [cy, ... ,cm]T

min
s.t
Capacitated minimum cost flow problem
z=[z,..,2n]' maximum flow on each arc
min
s.t

Example: Shortest path®

e ¢ “length” of each arc, e.g., ¢ = 1 (number of hops metric)
e Shortest path fromstot:ds =1,dr = —1,d =0V i#s,t
e Simultaneous shortest pathsto t: di = —n+1,di=1Vi#t

® Not all flow solutions to these two problems describe shortest paths, but at least one does.

Chapter 5: Models — Flow problems
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Minimum cost flow problem TI-ITI

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: ¢ = [cy, ... ,cm]”

min ¢ x
s.t. Mx=d
x>0

Solution approaches

e General purpose linear programming solver (Simplex, Interior point, etc.)

e Specialized algorithms (Dijkstra, Bellman-Ford, network simplex, etc.) exploiting graph structure and recursive structure of the optimal
solution (if available)
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Maximum s-t flow problem

Capacitated minimum cost flow problem

z =[z4,..., zm]" maximum flow on each arc with source vector ds = 1, d; = —1,di =0V i # s, t
max r
s.t. Mx=rd
x<z
x>0

Solution approaches

e General purpose linear programming solver (Simplex, Interior point, etc.)
e |Lagrangian duality approaches (selectively relax one constraint)
e Specialized algorithms (Ford-Fulkerson) exploiting graph structure and relation to min-cut

Chapter 5: Models — Flow problems
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Min-cut and its capacity

® Ans-tcutisasubsetof nodes S C Nsuchthats € Sandt ¢ S.
® Anarc (i,j) € Acrosses Sifi € Sandj ¢ S.

e A(S) denotes all crossing arcs.

e The value of an s—t cut given the capacity vector z is defined as

i) = > z

(i) €-A(S)

e The value of any s—t cut upper bounds the maximum s—t flow.

Chapter 5: Models — Flow problems
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Min-cut and its capacity

® Ans-tcutisasubsetof nodes S C Nsuchthats € Sandt ¢ S.
® Anarc (i,j) € Acrosses Sifi € Sandj ¢ S.

e A(S) denotes all crossing arcs.

e The value of an s—t cut given the capacity vector z is defined as

i) = > z

(i) €-A(S)

e The value of any s—t cut upper bounds the maximum s—t flow.

Max-flow min-cut theorem
The value of the minimum s—t cut equals the value of the maximum s—t flow, i.e.,

max{r: Mx = rd, 0 < x < z} = min{v(S)

1 Sis s—t cut}.

Chapter 5: Models — Flow problems
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Min-cut and its capacity

Example 1: Diamond network froms =1tot =4

e Incidence matrix, source vector, capacity vector:

Chapter 5: Models — Flow problems
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Min-cut and its capacity

Example 1: Diamond network froms =1tot =4

1 5
2
3 4
e Incidence matrix, source vector, capacity vector:
1 0-1 0 0 1 }
—1 1 0 0—1 0

M= 0-1 1 1 0 d= |: o} z=1
0 0 0-—t1 1 —1 1

e Max-flow:
max{r:Mx=rd, 0 < x <z}=1
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Min-cut and its capacity

Example 1: Diamond network froms =1tot =4

e Incidence matrix, source vector, capacity vector:

e Max-flow:
max{r:Mx=rd, 0 < x <z}=1

® Min-cut:
min{v(S) : Siis s-t cut} =1

Chapter 5: Models — Flow problems 5-20



Minimum cost maximum s—t flow problem

Generalizes (uncapacitated) minimum cost and (capacitated) maximum flow s—t problem:

e Source and flow vector: d, x
e Capacity and cost vector: z, ¢

min

cx
Mx =d
x>0

x<z

Chapter 5: Models — Flow problems



Minimum cost maximum s—t flow problem TI.ITI

Generalizes (uncapacitated) minimum cost and (capacitated) maximum flow s—t problem:

e Source and flow vector: d, x
e Capacity and cost vector: z, ¢

min ¢ x

s.t. Mx=d
x>0
x<z

Special cases

e Maximum s—t flow (see tutorial)
e Minimum cost flow (capacitated z < oo, uncapacitated z = o)

Chapter 5: Models — Flow problems



Multicommaodity flow problems TI-ITI
In contrast to single-commodity flow problems we now have multiple commodities, e. g. flows, that compete with each other:

e Commodities C = {1,...,c},
e Source, flow, and cost vector of commodity k: di, Xk, Ck
e Capacity shared across all commodities: z

The min-cost max-flow problem then reads as:
min Z c[xk
keC
s.t. Mx, = dx Vk € C
Xk >0 VkeC

Zxk <z

kec
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Multicommaodity flow problems

In contrast to single-commodity flow problems we now have multiple commodities, e. g. flows, that compete with each other:

e Commodities C = {1,...,c},
e Source, flow, and cost vector of commodity k: di, Xk, Ck
e Capacity shared across all commodities: z

The min-cost max-flow problem then reads as:
min Z c[xk
keC
Mx; = dg
Xk >0

Zxk <z

kec

s.t.

Properties

e Flow conservation applies to all commodities individually
e Capacity is shared among all commodities

Vk € C
Vk € C
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Multicommaodity flow problems

Optimality of a solution now even more depends on what is considered “optimal”:

e The previous definition is a joint optimization of the weighted sum rate >, o} x.
e This allows that commodities (flows) are assigned few or no resources at all.

e Fairness?

Chapter 5: Models — Flow problems
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Multicommaodity flow problems

Optimality of a solution now even more depends on what is considered “optimal”:

e The previous definition is a joint optimization of the weighted sum rate >, o} x.
e This allows that commodities (flows) are assigned few or no resources at all.

e Fairness?

Additional constraints, e.g. assigning a minimum amount of resources for individual commaodities, may amend the cost function.
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Multicommaodity flow problems TI-ITI

Optimality of a solution now even more depends on what is considered “optimal”:

e The previous definition is a joint optimization of the weighted sum rate >, o} x.
e This allows that commodities (flows) are assigned few or no resources at all.

e Fairness?

Additional constraints, e.g. assigning a minimum amount of resources for individual commaodities, may amend the cost function.

Solution approaches

e General purpose linear programming solver
e Lagrangian duality approaches (selectively relax one constraint, mostly the capacity constraint which couples all flows)
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Multicast in networks TI-ITI

Multicast in networks as flow problems

e Multicast communication is identified by its terminal set T C N.
e We can consider one or multiple sources (there is no big difference from a theoretical perspective).
e Special cases:
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Multicast in networks as flow problems

e Multicast communication is identified by its terminal set T C N.
e We can consider one or multiple sources (there is no big difference from a theoretical perspective).
e Special cases:

® unicast (one source, one terminal)
e Dbidirectional communication (two nodes that are sources and terminals)
e broadcast (all nodes other than the source are terminals)
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Multicast in networks

Multicast in networks as flow problems

e Multicast communication is identified by its terminal set T C N.

e We can consider one or multiple sources (there is no big difference from a theoretical perspective).

e Special cases:

® unicast (one source, one terminal)
e Dbidirectional communication (two nodes that are sources and terminals)
e broadcast (all nodes other than the source are terminals)

How is multicast treated in networks?

e Convert to unicasts

— replicate packets at source and store-forward at all other nodes
e Allow replication at all nodes

— multicast tree/ Steiner tree based forwarding

e Allow coding at all nodes
— network coding
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Store-forward multicast TI.ITI

. O—@
M.@

e The flows to the terminals are independent of each other.
e Capacity needs to be split among all flows.

max s—T flow problem:
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Store-forward multicast

@—@

S

e The flows to the terminals are independent of each other.
e Capacity needs to be split among all flows.

max s—T flow problem:

e One commodity for each terminal t € T
e Source vector dg such that dsts = 1, dstr = —1, and ds; = 0 otherwise
e Capacity vector z split among commodities

max r s.t. Mx; = rdgy VteT
x>0 vte T

Zx,gz

teT
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Store-forward multicast TI.ITI

@—@

S

e The flows to the terminals are independent of each other.
e Capacity needs to be split among all flows.

max s—T flow problem:

e One commodity for each terminal t € T
e Source vector dg such that dsts = 1, dstr = —1, and ds; = 0 otherwise
e Capacity vector z split among commodities

max r s.t. Mx; = rdgy VteT
x>0 vte T

Zx,gz

teT

= That is a multicommaodity flow problem!
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Store-forward multicast

e Optimal flow solutions

e xg=[100100000]"
e x;=[010001000]"

e Total flow which is capacity relevant

® Xg+Xx7=[110101000]"

maximum multicast s—T flow = 1
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

e Example 1-{6, 7} multicast trees:
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

@(@@ ®

-@
e Example 1-{6, 7} multicast trees:
° (1,2),(1,3),(2,6),(3,7)
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

¢ o—a

® @

e Example 1-{6, 7} multicast trees:
(1,2),(1,3),(2,6),(3,7)

.
°* (1,2),(2,4),(2,6),(4,5),(5,7)
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

® ®

e Example 1-{6, 7} multicast trees:
° (1,2),(1,3),(2,6),(3,7)
° (1,2),(2,4),(2,6),(4,5),(57)
® (1,3),(3,4),(3,7),(4,5),(56)
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

& ol

® @
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

® ®

6\ g @

e Example 1-{6, 7} multicast trees:
(1.2),
1,2

(1.
(
(

Lhenn

1,3
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

&

O @

e Example 1-{6, 7} multicast trees:

e o o o o o
W N W

n
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

() . @/,@

® 10

e Example 1-{6, 7} multicast trees:

(&)

(&)

e e 0o 0 0 0 o
D onennd

n
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Multicast tree-based forwarding TI.ITI

e s—T multicast tree: a tree rooted at s such that there exists a directed path to each t € T (arcs belong to at least one path).
e Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.

e Example 1-{6, 7} multicast trees:

W N W

n

2 (5,7)

(1,2),(1,3
e Optimal solution is a superposition of those multicast trees

e subject to the capacity constraints but
® without explicit flow conservation law.
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Multicast tree-based forwarding TI.ITI

max s—T flow problem

e Multicast trees MTsr = {1, ..., K}
e Multicast tree incidence vector x, such that xx; = 1 if arc j is in the k-th multicast tree, otherwise x4 ; = 0
e One commodity for the multicast, no flow conservation constraint

e Capacity vector z split among all trees

max E I

KEMTr

s.t. Z nXxg < z

kEMTgT

k>0 Vk € MTgr
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Multicast tree-based forwarding TI.ITI

max s—T flow problem

e Multicast trees MTsr = {1, ..., K}
e Multicast tree incidence vector x, such that xx; = 1 if arc j is in the k-th multicast tree, otherwise x4 ; = 0
e One commodity for the multicast, no flow conservation constraint

e Capacity vector z split among all trees

max E I

KEMTr

s.t. Z nXxg < z

kEMTgT

e >0 Vk € MTgr
Notes:
e Finding all multicast trees is a hard problem.

e In practice, heuristics that approximate optimal solutions are being used.
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Multicast tree-based forwarding

e Trees in optimal solution

(1,2),(1,3),(2,6),(3,7) x1=[110101000]
(1,2),(2,4),(2,6), (4,5),(5,7) xp=[101100101]"
(1,3),(3,4),(3,7),(4,5),(5,6) x3=[01001111 o]T
e Each tree carries rate 0.5.

L]
L]
L]
e Total flow which is capacity relevant
® 05(X{ +Xp+X3)=[1105105110505]"

Maximum Multicast s—T Flow = 1.5
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Multicast with network coding TI.ITI

® A single packet (coded unit of information) may serve multiple terminals simultaneously.

e Consider flow to each terminal separately.

e But capacity is shared among all flows, i. e., each flow can use the full capacity on each arc.

e Example (4, 5): flow s—t; and s—t, transmit unit of information over this arc, but only one coded packet is transmitted.
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Multicast with network coding
Network coding: Max s—T flow problem

e One commodity flow x; for each terminal t € T
e Source vector dg for each terminalt € T

e Capacity vector z is shared for all flows, i. e., capacity on each arc can be fully exploited by each commodity flow.

max r s.t. Mx;=rdg VteT
x>0 vte T
xt <z Vte T
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Multicast with network coding
Network coding: Max s—T flow problem

e One commodity flow x; for each terminal t € T
e Source vector dg for each terminalt € T

e Capacity vector z is shared for all flows, i. e., capacity on each arc can be fully exploited by each commodity flow.

max r s.t. Mx;=rdg VteT
x>0 vte T
xt <z Vte T

Note the difference:

e Capacity constraint must be fulfilled for individual flows only.

e There is no joint capacity constraint any more!
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Multicast with network coding TI.ITI

e Optimal flow solutions

L] x5=[110110101]T
o x7=[111001110]"

e Total flow which is capacity relevant

L] ma1><(x6,x7):[111111111]T

Maximum Multicast s—T Flow = 2
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Multicast with network coding TI.ITI

Comparison for Butterfly

oo

@

mode achievable capacity
store-forward 1.0
multicast tree 1.5
network coding 2.0

e Can we do even better?
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Multicast with network coding TI.ITI

Comparison for Butterfly

oo

@

mode achievable capacity
store-forward 1.0
multicast tree 1.5
network coding 2.0

e Can we do even better? No!

Chapter 5: Models — Multicast in networks 5-34



Multicast with network coding TI.ITI

Comparison for Butterfly

oo

@

mode achievable capacity
store-forward 1.0
multicast tree 1.5
network coding 2.0

e Can we do even better? No! Why?
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Multicast with network coding

Comparison for Butterfly

oo

@

mode

achievable capacity

store-forward
multicast tree
network coding

1.0
1.5
2.0

e Can we do even better? No! Why?

Min-cut upper bound on multicast rate

e Find all s—T cuts S and their values v(S).
e The cut with v(S) minimal limits the maximum flow.
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Multicast with network coding TI.ITI

Max-flow min-cut theorem (reformulated)
The value of the minimum s—t cut for all terminals t € T equals the value of the maximum s—T flow with network coding, i.e.,

max{r: Mx; =rds, 0 < x; <z, Vt € T}

minmin{v(S) : S is s—t cut}
teT
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Chapter 5: Models 'I'I.I'I'I

Wireless Packet Networks
Model 1: simple graph model with orthogonal medium access
Hypergraphs
Model 2: lossless hypergraph model with orthogonal medium access
Model 3: lossy hypergraph model with orthogonal medium access

Model overview
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Wireless Packet Networks
Wired vs. Wireless — Typical Properties

Wired Networks

e Most wired networks are composed from individual point-to-point links, which do not interact and share no resources on the physical
layer.

e Physical links are almost lossless and error-free.

® Wired networks can be modeled as abstract graphs with perfect capacitated links for throughput calculation.
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Wireless Packet Networks TI-ITI

Wired vs. Wireless — Typical Properties

Wired Networks

e Most wired networks are composed from individual point-to-point links, which do not interact and share no resources on the physical
layer.

e Physical links are almost lossless and error-free.
® Wired networks can be modeled as abstract graphs with perfect capacitated links for throughput calculation.

Wireless Networks

® Wireless networks share a common transmission medium.

® The medium is shared and omnidirectional, which turns it into a broadcast medium and causes interference.
e Wireless transmissions are prone to errors leading to packet errors or packet loss.

e How can we model wireless networks? Graphs?

Note: There are wired networks that use broadcast media, such as good old Ethernet without switches. Are there other such networks in use today?
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Wireless Packet Networks TI-ITI

Packet Networks

e Information is encoded into packets, which are protected by an

e error correcting code on the physical layer (channel code) for removing inevitable transmission errors and an
e error detecting code (e.g. CRC) to detect any residual errors or decoding failures of the channel code, and

e have individual addressing information attached in order to route packets indepedently from source to destination.
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Wireless Packet Networks TI-ITI

Packet Networks
e Information is encoded into packets, which are protected by an

e error correcting code on the physical layer (channel code) for removing inevitable transmission errors and an
e error detecting code (e.g. CRC) to detect any residual errors or decoding failures of the channel code, and

e have individual addressing information attached in order to route packets indepedently from source to destination.

Note: on point-to-point links there may be no need for addressing information, e.g. Serial Line Internet Protocol (SLIP).
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Wireless Packet Networks TI-ITI

Wireless Packet Networks

® Due the broadcast nature of wireless transmissions, elaborated schemes for medium access are needed:

e Simultaneous transmissions may cause interference.
® Without simultaneous transmissions resources may be wasted.
e Some kind of fairness should be provided.

= Medium access needs to be organized (centrally or distributed).
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Wireless Packet Networks TI-ITI

Wireless Packet Networks

® Due the broadcast nature of wireless transmissions, elaborated schemes for medium access are needed:

e Simultaneous transmissions may cause interference.
® Without simultaneous transmissions resources may be wasted.
e Some kind of fairness should be provided.

= Medium access needs to be organized (centrally or distributed).

e Transmitted packets are randomly lost, i. e., not decodable at the physical layer:

® Loss may be due to imperfections of wireless communication (channel fading, mobility, etc.).
e Loss may be also due to interference (packet collisions).
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Wireless Packet Networks TI-ITI

Wireless Packet Networks

® Due the broadcast nature of wireless transmissions, elaborated schemes for medium access are needed:

e Simultaneous transmissions may cause interference.
® Without simultaneous transmissions resources may be wasted.
e Some kind of fairness should be provided.

= Medium access needs to be organized (centrally or distributed).

e Transmitted packets are randomly lost, i. e., not decodable at the physical layer:

® Loss may be due to imperfections of wireless communication (channel fading, mobility, etc.).
e Loss may be also due to interference (packet collisions).

e Transmitted packets are not only received by one (intended) node but by multiple nodes (known as wireless broadcast advantage).

e Need to model selective overhearing of individual packets. Who gets which packet?

Chapter 5: Models — Wireless Packet Networks 5-39



Model 1: simple graph model with orthogonal medium access TI.ITI

e Ignore broadcast advantage, i. e., transmissions are ignored by all but the intended receiver.
e Modify arc capacities to consider

® medium access and interference, and
® packet losses.

Chapter 5: Models — Wireless Packet Networks 5-40



Model 1: simple graph model with orthogonal medium access TI.ITI

e Ignore broadcast advantage, i. e., transmissions are ignored by all but the intended receiver.
e Modify arc capacities to consider

® medium access and interference, and
® packet losses.

Wireless network model
e Graph (N, A)
e Arc capacity vector z
e Region of admissible capacity vectors Z:

e Each z € Z corresponds to a different trade-off between all arcs.
e Trade-off is necessary due to shared resources and interference.

Note: Compare to wired networks, where each arc capacity depends only on the properties of the underlying link.
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Model 1: simple graph model with orthogonal medium access TI.ITI

Assumptions

e Same code rate for all packets

e Equal and arbitrarily fine splitting of resources

e No simultaneous transmissions (orthogonal medium access)
* No interference

e Shared transmission time / frequency resources:
resource share 7; of arc j s.t. total resource shares add up to 1

e Packet loss (due to fading/noise/mobility/. .. ):
packet loss probability £; € [0, 1] on arc j (g; = 0 for all j means no packet loss)
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Model 1: simple graph model with orthogonal medium access TI.ITI

Assumptions

e Same code rate for all packets

e Equal and arbitrarily fine splitting of resources

e No simultaneous transmissions (orthogonal medium access)
* No interference

e Shared transmission time / frequency resources:
resource share 7; of arc j s.t. total resource shares add up to 1

e Packet loss (due to fading/noise/mobility/. .. ):
packet loss probability £; € [0, 1] on arc j (g; = 0 for all j means no packet loss)

Arc Capacity Region (NC or ACK/NACK)
z= | Jtziz=n0 -9

T>0:
1Tr<t
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Model 1: simple graph model with orthogonal medium access

Maximum s-t Flow

e Source vector dg
® |ncidence matrix M
e Arc capacity region Z

max r

s.t.

Mx = rdg
x>0
x<z

zezZ
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Model 1: simple graph model with orthogonal medium access

Maximum s-t Flow

e Source vector dg
e Incidence matrix M
e Arc capacity region Z

Maximum s-T multicast flow

e Source vectordg forallt € T
® Incidence matrix M
® Arc capacity region Z

max r s.t. Mx =rdg
x>0
x<z

zezZ

max r s.t. Mx;= rdg VteT
x; >0 vte T
xt <z vte T
ze Z
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Model 1: simple graph model with orthogonal medium access

Multicast max-flow min-cut theorem (model 1)

max min min
zeZ teT

max{r:Mx,:rdst, 0< x;: <2z Vte T,zeZ}

v(S) = Z z:Sis s-T cut
JEA(S)

The value of the minimum s-T cut for all terminals t € T equals the value of the maximum s-T flow with network coding, i.e., ,
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Hypergraphs

Directed hypergraphs
A directed hypergraph G = (N, H) consists of a

e setofnodes N = {1,..,n} and
e set of hyperarcs H = {1, ..., m} where

e each hyperarc j € H represents an ordered pair (a, B) of
e of asource node a € Nand
e asubsetof nodes B C Nwitha ¢ B.

We write j = (a, B) € H, similar to the notation of ordinary arcs and their indices.
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Hypergraphs TI.ITI

Directed hypergraphs
A directed hypergraph G = (N, H) consists of a

e setofnodes N = {1,..,n} and
e set of hyperarcs H = {1, ..., m} where

e each hyperarc j € H represents an ordered pair (a, B) of
e of asource node a € Nand
e asubsetof nodes B C Nwitha ¢ B.

We write j = (a, B) € H, similar to the notation of ordinary arcs and their indices.

Example:

All hyperarcs (a, B) € H with a = 1:
e (1,{2}), (1. {3}), (1, {4}) @
° (1,{2,3}),(1,{2,4}), (1, {3.4})

* (1.{2,3.4}) :
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Hypergraphs TI.ITI

Directed hypergraphs
A directed hypergraph G = (N, H) consists of a

e setofnodes N = {1,..,n} and
e set of hyperarcs H = {1, ..., m} where

e each hyperarc j € H represents an ordered pair (a, B) of
e of asource node a € Nand
e asubsetof nodes B C Nwitha ¢ B.

We write j = (a, B) € H, similar to the notation of ordinary arcs and their indices.

Example:

All hyperarcs (a, B) € H with a = 1:
e (1,{2}), (1. {3}), (1, {4}) @
° (1.{2,3}), (1.{2.4}), (1. {3.4})
* (1.{2,3,4}) :

If a packet is sent over hyperarc j = (a, B), then

e allnodes b € B overhear an (identical) copy of that packet and
e no other node i ¢ B overhears that packet. Chapter 5: Models — Wireless Packet Networks 544



Hypergraphs TI.ITI

The directed graph (N, A) induced by hypergraph (N, H) consists of
e allarcs k = (a, b) such that
e there exists j = (a,B) € H withb € B.
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Hypergraphs TI.ITI

The directed graph (N, A) induced by hypergraph (N, H) consists of
e allarcs k = (a, b) such that
e there exists j = (a,B) € H withb € B.

For the induced graph we
e denote the set of arcs that is generated by hyperarc j by A; and
e define the hyperarc-arc incidence matrix as

N—(n)- B 1 ifkeAj,
TR T Y0 otherwise.
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Hypergraphs TI.ITI

The directed graph (N, A) induced by hypergraph (N, H) consists of
e allarcs k = (a, b) such that
e there exists j = (a,B) € H withb € B.

For the induced graph we
e denote the set of arcs that is generated by hyperarc j by A; and

e define the hyperarc-arc incidence matrix as

1 ifk € A,
N=(”)/k={ !

0 otherwise.
Example:
jeEH (a,B) € H A kcA
1 (1.{2}) {(1,2)} 1
2 (1.{3} {(1,3)} 2
3 (1.{4} {(1,4)} 3
4 (1,{2,3}) {(1,2),(1,3)} 1,2
5 (1,{2,4}) {(1,2),(1,4)} 1,3
6 (1,{3,4}) {(1,3),(1,4)} 2,3
7 (1,{2,3,4}) {(1,2),(1,3),(1,4)} 1,2,3
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Model 2: lossless hypergraph model with orthogonal medium access TI.ITI

e Hypergraph (N, H)

e One hyperarc per node (simplification), enumerated according to the node the hyperarc is originating at
® Inherits MAC properties from model 1 (orthogonal medium access)

e Each node gets a resource share 7; > 0 such that 3=, 7 < 1

e Packets transmitted on a hyperarc j = (a, B) are received by all nodes b € B
e No packets are lost
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Model 2: lossless hypergraph model with orthogonal medium access TI.ITI

Information flow in lossless hypergraphs (model 2)

e |nformation flow vector x on induced graph (N, A)
e Demand vector d and incidence matrix M
® Flow must be conserved on induced graph, i.e.,
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Model 2: lossless hypergraph model with orthogonal medium access TI.ITI

Information flow in lossless hypergraphs (model 2)

e |nformation flow vector x on induced graph (N, A)
e Demand vector d and incidence matrix M
® Flow must be conserved on induced graph, i.e.,

Mx =d
e Hyperarc-arc incidence matrix N
® Receivers of a hyperarc get identical packets over this hyperarc
e Each piece of information can only be used once (by one node)

Nx <z = Zxkgz, VjieH
KEA;
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Model 2: lossless hypergraph model with orthogonal medium access

Information flow in lossless hypergraphs (model 2)

e |nformation flow vector x on induced graph (N, A)
e Demand vector d and incidence matrix M
® Flow must be conserved on induced graph, i.e.,

Mx =d
e Hyperarc-arc incidence matrix N
® Receivers of a hyperarc get identical packets over this hyperarc
e Each piece of information can only be used once (by one node)

Nx <z = Zxkgz, VjieH
KEA;

2o Jteiaem

T>0:
1Tr<1

e Lossless Hyperarc Capacity Region (NC)
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Model 2: lossless hypergraph model with orthogonal medium access

Hyperarc maximum s-t flow (routing/network coding)
e Source vector dg;
® Incidence matrix M
e Hyperarc-arc incidence matrix N
e Hyperarc capacity region Z

max r s.t. Mx =rdg
x>0
Nx <z
zec Z
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Model 2: lossless hypergraph model with orthogonal medium access

Hyperarc maximum s-t flow (routing/network coding)
e Source vector dg;
® Incidence matrix M
® Hyperarc-arc incidence matrix N
e Hyperarc capacity region Z

Hyperarc maximum s-T multicast flow (network coding)
e Source vector dg;
® Incidence matrix M
e Hyperarc-arc incidence matrix N
e Hyperarc capacity region Z

e We can use each hyperarc (packet) only once for each terminal.
e But we can use each hyperarc differently for each terminal.

max r s.t. Mx =rdg
x>0
Nx <z
zeZ

max r s.t. Mx;= rdg VteT
x; >0 vte T
Nx; <z Vte T

ze Z
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Model 2: lossless hypergraph model with orthogonal medium access

Hyperarc min-cut model

e Ans-tcutis asubsetof nodes S C Nsuchthats € Sandt ¢ S.

® Ahyperarcj = (a,B) € H crosses Sifac SandB ¢ S.
H(S) denotes all crossing arcs, and H(S) their indices.

e The value of any s-t cut upper bounds the maximum s-t flow.

e The value of an s-t cut given the capacity vector z is defined as

vS)= D z= >, zs

jeH(S) (a,B)EH(S)

e Model 2 (only one hyperarc per node, z;g = 74):
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Model 2: lossless hypergraph model with orthogonal medium access TI.ITI

Multicast max-flow min-cut theorem (model 2)
The value of the minimum s-T cut for all terminals t € T equals the value of the maximum s-T flow with network coding, i. e.,

max{r IMx; =rdg, 0 < x¢, Nx; <z, VteT,z€ Z}

max minmin < v(S) = > z: Siss-T cut
zeZ teT .
JEH(S)
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Model 3: lossy hypergraph model with orthogonal medium access

Idea: Use model 2 but
e account for packet erasures and
e allow different erasure probabilities to each neighbor.

= one hyperarc per node is insufficient
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Idea: Use model 2 but

account for packet erasures and
allow different erasure probabilities to each neighbor.

= one hyperarc per node is insufficient

Changes made to model 2:

Hypergraph (N, H) with induced graph (N, A).
Let N, denote the set of neighbors of node a € N.
For each node a € N consider all possible hyperarcs j = (a, B) for any B C Nj.
Packet loss is independent across all receivers (simplification).
Packets from a to b are lost with probability e, where k = (a, b), i.e., k € A is an arc index of the induced graph.
A packet transmitted by a € N is transmitted on hyperarc j = (a, B), i. e, it is received precisely by B C N, and lost by all other nodes
N, \ B, with probability
Pr[“no loss on j = (a, B)" | “a transmits”] = H(1 — €ab) H €ab-

beB b¢B
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Information flow in lossy hypergraphs (model 3)

e Information flow vector x on induced graph (N, A).
e Flow must be conserved on induced graph, i.e., Mx = d.
e Receivers of a hyperarc get identical packets over this hyperarc provided they have not lost the packets.

Given a transmitter a, we are interested in an upper bound for the flow from a to a set of receivers B C N, (where N, denotes the
neighborhood of node a).

e Each piece of information can only be used by one successful receiver.
e The total flow from a to B must not exceed the total amount of different received packets of this set of nodes.

This is equivalent to the probability that
® node a is transmitting at all and
® atleast one node b € B overhears the transmission.

It does not matter whether or not more than one or which specific node in B overhears the transmission.
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

For a 1-receiver set B = {b} and induced arc k = (a, b):
e Which hyperarcs may transport packets from a to b?

= Flow bound:

Xk = Xab <

Chapter 5: Models — Wireless Packet Networks 5-53



Model 3: lossy hypergraph model with orthogonal medium access

For a 1-receiver set B = {b} and induced arc k = (a, b):
e Which hyperarcs may transport packets from a to b?
Any hyperarc j/ = (a, B’) with b € B’, and precisely these hyperarcs induce arc k = (a, b).

= Consider all (a,B') =/ € H: (a,b) = k € Ay.

Figure 1: Example for a = 1 and b = 4, only hyperarcs
i €eH ke Ai’ are shown

= Flow bound:

Xe=Xap <D
(a,B")=j':
(avb)GAjl
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Model 3: lossy hypergraph model with orthogonal medium access
For a 1-receiver set B = {b} and induced arc k = (a, b):
e Which hyperarcs may transport packets from a to b?
Any hyperarc j/ = (a, B’) with b € B’, and precisely these hyperarcs induce arc k = (a, b).

= Consider all (a,B') =’ € H: (a,b) = k € Ay.

Figure 1: Example for a = 1 and b = 4, only hyperarcs
i/ €eH: ke Ai' are shown

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if node a is transmitting at all.

= Flow bound:

Xk = Xab < E Ta

(a,B")=j':
(a,b)eAj,
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Model 3: lossy hypergraph model with orthogonal medium access
For a 1-receiver set B = {b} and induced arc k = (a, b):
e Which hyperarcs may transport packets from a to b?
Any hyperarc j/ = (a, B’) with b € B’, and precisely these hyperarcs induce arc k = (a, b).

= Consider all (a,B') =’ € H: (a,b) = k € Ay.

Figure 1: Example for a = 1 and b = 4, only hyperarcs
i/ €eH: ke Ai' are shown

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if node a is transmitting at all.

e What is the probability that a packet transmitted over j/ = (a, B') is successfully received by precisely B’ C N?

= Flow bound:

Xk = Xab < E Ta

(a,B")=j':
(ayb)EAj/
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Model 3: lossy hypergraph model with orthogonal medium access
For a 1-receiver set B = {b} and induced arc k = (a, b):
e Which hyperarcs may transport packets from a to b?
Any hyperarc j/ = (a, B’) with b € B’, and precisely these hyperarcs induce arc k = (a, b).

= Consider all (a,B') =’ € H: (a,b) = k € Ay.

Figure 1: Example for a = 1 and b = 4, only hyperarcs
i/ €eH: ke Ai’ are shown

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if node a is transmitting at all.

e What is the probability that a packet transmitted over j/ = (a, B') is successfully received by precisely B’ C N?

e Since all b’ € B’ must receive the packet, none of the arcs (a, b’) € Ay induced by hyperarc j = (a, B') must fail, and
e no other induced arc originating at a must succeed.

= Flow bound:

Xk=Xb < Y Ta I|(1*Eab/)||€ab/=YaB=yj
(aB")=j": /e’ /¢B/
e b’€B b’ ¢B
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

For a 2-receiver set B = {by, b} and induced arcs k1 = (a, bi) and kx = (a, bo):
e Which j/ € H may transport packets to either by or by?

= Flow bound:

Xiy + Xkp = Xaby + Xaby <
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Model 3: lossy hypergraph model with orthogonal medium access
For a 2-receiver set B = {by, b} and induced arcs k1 = (a, bi) and kx = (a, bo):
e Which j/ € H may transport packets to either by or by?

Any hyperarc j' = (a, B') with B’ N B # 0, and precisely these hyperarcs induce either ki, ko, or
both.

= Consider all (a,B’) =’ € H: {ki, ke} N Ay # 0.

Figure 2: Example for a = 1 and B = {2, 4}; shaded hyperarcs are
for B/ = {4}, solid hyperarcs are the additions for B = B’ U {2}

= Flow bound:

Xiy + Xkp = Xaby + Xaby < E
(a,B")=j":
{ky ,kz}ﬁAl.,#(Zl
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Model 3: lossy hypergraph model with orthogonal medium access
For a 2-receiver set B = {by, b} and induced arcs k1 = (a, bi) and kx = (a, bo):
e Which j/ € H may transport packets to either by or by?

Any hyperarc j' = (a, B') with B’ N B # 0, and precisely these hyperarcs induce either ki, ko, or
both.

= Consider all (a,B’) =’ € H: {ki, ke} N Ay # 0.

Figure 2: Example for a = 1 and B = {2, 4}; shaded hyperarcs are
for B/ = {4}, solid hyperarcs are the additions for B = B’ U {2}

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if a is transmitting at all.

= Flow bound:
Xiy + Xkp = Xaby + Xaby < E Ta
(a,B")=j":

{ky ,kz}ﬁAl., #0
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Model 3: lossy hypergraph model with orthogonal medium access
For a 2-receiver set B = {by, b} and induced arcs k1 = (a, bi) and kx = (a, bo):
e Which j/ € H may transport packets to either by or by?

Any hyperarc j' = (a, B') with B’ N B # 0, and precisely these hyperarcs induce either ki, ko, or
both.

= Consider all (a,B’) =’ € H: {ki, ke} N Ay # 0.

Figure 2: Example for a = 1 and B = {2, 4}; shaded hyperarcs are
for B/ = {4}, solid hyperarcs are the additions for B = B’ U {2}

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if a is transmitting at all.

e What is the probability that a packet transmitted over j’ = (a, B') is successfully received by precisely B’ C N?

= Flow bound:
Xiy + Xkp = Xaby + Xaby < E Ta
(a,B")=j:

{ky ,kz}ﬁAl., #0
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Model 3: lossy hypergraph model with orthogonal medium access
For a 2-receiver set B = {by, b} and induced arcs k1 = (a, bi) and kx = (a, bo):
e Which j/ € H may transport packets to either by or by?

Any hyperarc j' = (a, B') with B’ N B # 0, and precisely these hyperarcs induce either ki, ko, or
both.

= Consider all (a,B’) =’ € H: {ki, ke} N Ay # 0.

Figure 2: Example for a = 1 and B = {2, 4}; shaded hyperarcs are
for B/ = {4}, solid hyperarcs are the additions for B = B’ U {2}

e Packets may be transferred over any of these hyperarcs (a, B’) = j/, but only if a is transmitting at all.

e What is the probability that a packet transmitted over j’ = (a, B') is successfully received by precisely B’ C N?

e Since all b’ € B’ must receive the packet, none of the arcs (a, b’) € A;; induced by hyperarc i’ = (a, B’) must fail, and
® no other induced arc originating at a must succeed.

= Flow bound:

Xy + Xiy = Xaby + Xab, < Z Ta I | (1 —ear) | I Eap/ = YaB =Y
(a B/)E". b’ eB! 7 ’
{k1,k2}ﬁAl.,#(Zl b'es
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI
Generalization to multiple receiver sets:

e Each pair (a, B) corresponds to some hyperarc j, i.e., j = (a, B).
e That hyperarc induces the set A; of arcs.
e The flow bound is determined by all hyperarcs j/ € H : Aj N A # 0

Sx= Y < 3 o [Jo-cwn [] e - ve-y

keA; (ab)eA; (aB")=j": b’ eB’ b’ ¢B’
Aijj,#w
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Model 3: lossy hypergraph model with orthogonal medium access
Generalization to multiple receiver sets:

e Each pair (a, B) corresponds to some hyperarc j, i.e., j = (a, B).
e That hyperarc induces the set A; of arcs.
e The flow bound is determined by all hyperarcs j/ € H : Aj N A # 0

Sx= Y < 3 o [Jo-cwn [] e - ve-y

keA; (ab)eA; (a,B")=/": b’ eB’ b’ ¢B’
AjNA,#0
J
e Hyperarc capacity:
Zj = ZaB = Ta I |(1 — €ab) | Isab
beB b¢B
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Generalization to multiple receiver sets:

e Each pair (a, B) corresponds to some hyperarc j, i.e., j = (a, B).
e That hyperarc induces the set A; of arcs.
e The flow bound is determined by all hyperarcs j/ € H : Aj N A # 0

Sx= Y < 3 o [Jo-cwn [] e - ve-y

keA; (ab)eA; (a,B")=/": b’ eB’ b’ ¢B’
Aijj,#e)
e Hyperarc capacity:
Zj = ZaB = Ta H(1 — €ab) H Eab
beB b¢B
e Hyperarc capacity region:
z- U {z:z,:zag =TE,H(1 —eab)Hsab Vj=(aB) e H}
>0 beB bgB
1Tr<i
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Information flow in lossy hypergraphs (model 3)

e Reformulation of the lossy flow bound (for all receiver set):

Zxkgfa(1—Hsk)=yj Vi=(a,B) eH

keA; kEA;
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Information flow in lossy hypergraphs (model 3)

e Reformulation of the lossy flow bound (for all receiver set):

Zxkgfa(1—Hsk)=y, Vi=(aB) e

keA; kEA;

V- {y:y,-=fa<1—Hsk) VjE(a,B)EH}

>0 keA;

1Tr<1

e Broadcast capacity region
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Model 3: lossy hypergraph model with orthogonal medium access
Information flow in lossy hypergraphs (model 3)

® Hyperarc-arc incidence matrix

1 ifk €A
N = (Ny) =
(M) {0 otherwise

® Hyperarc-hyperarc incidence matrix

1 fANA#0
Q-(@)- 7
0 otherwise

® Hyperarc-to-broadcast transformation

y=Qz
® Lossy hyperarc flow bound with hyperarc capacity region
Nx < Qz
® Lossy hyperarc flow bound with broadcast capacity region
Nx <y
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc maximum s-t flow (opportunistic RT/NC)

e Source vector dg;

e Incidence matrix M

e Hyperarc-arc incidence matrix N
e Broadcast capacity region )

max

r s.t. Mx = rdg;
x>0
Nx <y
yey
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc maximum s-t flow (opportunistic RT/NC)

e Source vector dg;

® Incidence matrix M

e Hyperarc-arc incidence matrix N
e Broadcast capacity region )

Lossy hyperarc maximum s-T multicast flow (NC)

e Source vector dg

® Incidence matrix M

e Hyperarc-arc incidence matrix N
e Broadcast capacity region

max r s.t Mx = rdg
x>0
Nx <y
yey

max r s.t. Mx;= rdgy VteT
x; >0 vte T
Nx; <y VteT

yey
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

e Ans-tcutis asubsetof nodes S C Nsuchthats € Sandt ¢ S.

e Ahyperarcj = (a,B) € H crosses Sifac SandB ¢ S,i.e, BN (N\ S) # 0.
® H(S) denotes all crossing hyperarc indices, #(S) all crossing hyperarcs.

e The value of any s-t cut upper bounds the maximum s-t flow.

e The value of an s-t cut given the capacity vector z is defined as

v(S) = Z ;.

JEH(S)
e Cut value of model 3:
OSSR || (EEe] | £
@BIEH(S)  pep b¢B

e A,(S): Setofarcs (a,b) e A:beN\S
(Aa(S) denotes index set of crossing arcs)

(
(S)
® 7H,(S): Setof hyperarcs (a,B) € H:BN(N\ S) # 0
(Ha(S) denotes the index set of crossing hyperarcs)
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model
e Characterize H(S):
H(S)={(@a,B)ye H:ae S,BN(N\S)+0}

= U’Ha(S)

aes

- U{(a,B) =jEHIANA(S) %0}
aes

e Cut value of Model 3 (looks very much like flow bound):

OED DD SR | CEEmY | B

acs Jj=(aB):
AnAg(si#0  °€F bes
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

e Flow bound:

Su< S o H(1fsab/)]:[sab/=yj Vj = (a, B)
keA j'=(a,B’): -y rap!
yj WAy 20 b’ eB b’ ¢B

e Cut value of model 3:

OED DD SR [| CEEmY | B

aes Jj=(@B):
AinAg(si#0  °€F b¢s

EH
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

e Flow bound:

Sx< S THH(1*€ZDI)H€ab/=y]' Vj=(aB)eH

keA j'z(a,B’): b’ B’ b’ ¢B’

! AjﬁA//#(Zl < ¢
Zxkgra(1—]:[sk)=yj Vj=(a,B) € H
kEA; KkEA

e Cut value of model 3:

OED DD SR [| CEEmY | B

aes Jj=(@B):
AinAg(si#0  °€F b¢s
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

e Flow bound:

e Cut value of model 3:

Su< S o H(1fsab/)]:[sab/=yj Vj = (a, B)
keA j'=(a,B’): /B! I ¢B’

Y by b b'eB b/ ¢B
Zxkgra(1—]:[sk)=yj Vj=(a,B) € H
ke KkEA

OED DD SR [| CEEmY | B

acs j=(aB):
AjNAg(S)#0 vee oee
v(S) = Z'ra (1 — H Ek) = Z Yj
aes kEAa(S) a’fs‘i’gfvf\:s

EH
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Model 3: lossy hypergraph model with orthogonal medium access TI.ITI

Multicast max-flow min-cut theorem (model 3)
The value of the minimum s-t cut for all terminals t € T equals the value of the maximum s-T flow with network coding, i. e.,

max{r TMx;=rdg, 0 < x;, Nx; <y, VteT,yc y}

max min min{v(S) = Y y:Sisst cut}

YEY teT j=(a,B)EH:
a€SAB=Na\S
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Model overview TI_ITI

Section 1: Model 1 — lossy non-hypergraph model
e Reflects lossy wired networks
e Cannot intuitively cope with broadcast media
e Flowbound: x<z Z= U {z:2z¢=7c(1 —ex) Vk € A}

>0nT <1

Note: Model 1 C Model2 C Model3
Chapter 5: Models — Wireless Packet Networks 5-63



Model overview TI_ITI

Section 1: Model 1 — lossy non-hypergraph model
e Reflects lossy wired networks
e Cannot intuitively cope with broadcast media
e Flowbound: x<z Z= U {z:2z¢=7c(1 —ex) Vk € A}
T>0A1T <1
Section 3: Model 2 — lossless hypergraph
e Considers broadcast media by hyperarcs
® No losses, i. e., single hyperarc from some a € N to all its neighbors b € N,
® Flowbound: Nx <2z Z-= U {z:z=7; VjeH}

r>0A1T <1

Note: Model 1 C Model2 C Model3
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Model overview TI_ITI

Section 1: Model 1 — lossy non-hypergraph model
e Reflects lossy wired networks
e Cannot intuitively cope with broadcast media
e Flowbound: x<z Z= U {z:2z¢=7c(1 —ex) Vk € A}
>0nT <1
Section 3: Model 2 — lossless hypergraph
e Considers broadcast media by hyperarcs
® No losses, i. e., single hyperarc from some a € N to all its neighbors b € N,
® Flowbound: Nx <2z Z-= U {z:z=7; VjeH}
r>0A1T <1
Section 4: Model 3 — lossy hypergraph

e Considers broadcast media by hyperarcs
e Allows for losses, i. e., hyperarcs from a € N to all subsets B C N, of neighbors

o Flowbound: Nx < Qz=y ¥ = U {y:y,-=ﬁ<1—Hsk> ij(a,B)eH}
>0n1T <1 kEA;

Note: Model 1 C Model2 C Model3
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