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Chapter 5: Models

Networks as graphs

Flow problems

Minimum cost flow problem

Maximum s-t flow problem
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Wireless Packet Networks

Model 1: simple graph model with orthogonal medium access
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Model 3: lossy hypergraph model with orthogonal medium access

Model overview
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Networks as graphs
Networks as graphs
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• (Wired) Networks can be modeled as abstract graphs.

• Information flow in networks with routing and forwarding can be modeled as
(multi-)commodity flow problem.

• Gives nice problems (flow optimization problems) and algorithms (Dijkstra,
Bellman-Ford, etc.).

• Special properties of “Information” (arbitrarily reproducible, coded represen-
tation, etc.) are not taken into account in the standard commodity model.
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Networks as graphs

• The set of nodes is given by N = {1, ... , n}
• The set of arc indices is given by A = {1, 2, ... , m}

• Each arc index j ∈ A represents an ordered pair of nodes
• We therefore write j ≡ (a, b)

• The set of arcs is given by A = {(a, b) | ∃ link from a ∈ N to b ∈ N}

Important structures

• path (directed, undirected)

• tree (directed, undirected)

• cycle (directed, undirected)

Note: We assume G is connected, i. e., there exists an undirected path between any pair of nodes.
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Networks as graphs
Examples

• Enumeration of arcs is arbitrary but must be fixed for a given network.

• Convention: use lexicographic order, i. e., (2, 1) ≺ (2, 3) ≺ (3, 2).
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Networks as graphs

Definition: incidence matrix M
Given G = (N, A ), we define the incidence matrix M = (mij ) ∈ {−1, 0, 1}|N|×|A| where ∀i ∈ N and j ∈ A

mij =

{
1 arc j leaves node i,

−1 arc j enters node i,

0 otherwise.
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Networks as graphs

Definition: undirected cycles in connected graphs
An undirected cycle C ⊂ A is defined as vector c ∈ {−1, 0, 1}|A| where

cj =

{
1 if j is traversed in forward direction,

−1 if j is traversed in backward direction,

0 otherwise.

The set of all cycles is denoted by C.

Definition: fundamental subspaces of M (G is connected)

null MT = span{1}1

null M = span{c : C ∈ C}

Dimensions:

• rank M = n − 1 2

• dim null MT = 1

• dim null M = m − n + 1 3

1
1 = [1, 1, ... , 1]T

2
Proof via undirected tree in G, adding any further arc creates a cycle

3
Number of linearly independent undirected cycles
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Networks as graphs

Examples: nullspace and cycles
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Chapter 5: Models

Networks as graphs

Flow problems

Minimum cost flow problem

Maximum s-t flow problem

Min-cut and its capacity

Minimum cost maximum s–t flow problem

Multicommodity flow problems

Multicast in networks

Wireless Packet Networks
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Flow problems

• The flow vector x = [x1, ... , xm ]T represents the amount of commodity (information) on each arc.

• The source vector d = [d1, ... , dn ]T represents the amount of commodity (information) that any node injects or consumes.

• Multiple information flows can be handled as a single commodity for routing / forwarding if they are
• destined for a single common destination and
• originate from a single common source.

1. Nonnegativity of flows

x ≥ 0 ⇔ xj ≥ 0 ∀j ∈ A

2. Flow conservation law (Kirchhoff current law)

Mx = d ⇔
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = di ∀i ∈ N

• FCL cannot be satisfied if 1Td /= 0 since 1TM = 0.
• FCL contains exactly one redundant constraint since rank M = n − 1 (if graph is connected).
• Flows along directed cycles are independent of d, i. e., flows that satisfy Mx = 0, x ≥ 0.
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Flow problems

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

1 5

2

3 4

• Incidence matrix and source vector:

M =

[
1 0 −1 0 0

−1 1 0 0 −1
0 −1 1 1 0
0 0 0 −1 1

]
d =

[ 1
0
0

−1

]
• Feasible flows for M, d:

F (M, d) = {x : Mx = d, x ≥ 0}
• Flow solution(s) (Unique? How many solutions?)

• xT = [ 1 1 0 1 0 ]
• xT = [ 1 1 0 1 0 ] + α [ 1 1 1 0 0 ] + β [ 0 1 0 1 1 ], α, β ≥ 0
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Flow problems

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

1

2

4

6

3

5

7 8

9
8

10

11

• Incidence matrix and source vector:

M =


1 1 0 0 0 0 0 0 0 0 0

−1 0 1 1 0 0 0 0 0 0 0
0 −1 0 0 1 1 0 0 0 0 0
0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 −1 1 1 0 0
0 0 0 −1 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1

 d =

 1
0
0
0
0
0
0

−1


• Feasible flows for M, d:

F (M, d) = {x : Mx = d, x ≥ 0}
• Flow solution(s) (Unique? How many?)

• xT = [ 1 0 0 1 0 0 0 0 0 1 0 ]
• xT = [ 0 1 0 0 1 0 1 0 1 0 1 ]
• xT = λ [ 1 0 0 1 0 0 0 0 0 1 0 ] + (1 − λ) [ 0 1 0 0 1 0 1 0 1 0 1 ], λ ∈ [0, 1]
• . . .
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Flow problems

Example 3: Flows from multiple sources to a single destination
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0 0 0 −1 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1

 d =

 1
1
1
1
0
0
0

−4


• Feasible flows for M, d

F (M, d) = {x : Mx = d, x ≥ 0}

• Flow solution(s) (Unique? How many?)

• x = [ 0 1 0 1 1 1 2 1 1 2 2 ]
• . . .

Chapter 5: Models — Flow problems 5-14



Flow problems

Example 3: Flows from multiple sources to a single destination

1

2

3

4 5

6

7

1

2

4

6

3

5

7 8

9
8

10

11

• Incidence matrix and source vector:

M =


1 1 0 0 0 0 0 0 0 0 0

−1 0 1 1 0 0 0 0 0 0 0
0 −1 0 0 1 1 0 0 0 0 0
0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 −1 1 1 0 0
0 0 0 −1 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1

 d =

 1
1
1
1
0
0
0

−4


• Feasible flows for M, d

F (M, d) = {x : Mx = d, x ≥ 0}

• Flow solution(s) (Unique? How many?)
• x = [ 0 1 0 1 1 1 2 1 1 2 2 ]

• . . .

Chapter 5: Models — Flow problems 5-14



Flow problems

Example 3: Flows from multiple sources to a single destination

1

2

3

4 5

6

7

1

2

4

6

3

5

7 8

9
8

10

11

• Incidence matrix and source vector:

M =


1 1 0 0 0 0 0 0 0 0 0

−1 0 1 1 0 0 0 0 0 0 0
0 −1 0 0 1 1 0 0 0 0 0
0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 −1 1 1 0 0
0 0 0 −1 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1

 d =

 1
1
1
1
0
0
0

−4


• Feasible flows for M, d

F (M, d) = {x : Mx = d, x ≥ 0}

• Flow solution(s) (Unique? How many?)
• x = [ 0 1 0 1 1 1 2 1 1 2 2 ]
• . . .

Chapter 5: Models — Flow problems 5-14



Flow problems

Definition: feasible flow region
Given the incidence matrix M of a connected graph G = (N, A ) and a source vector d ≥ 0, the feasible flow region is given by

F (M, d) = {x : Mx = d, x ≥ 0},

which is

• a closed1 polyhedral2 convex3 set,

• nonempty if 1Td = 0 (and G is connected),

• bounded4 if G is acyclic (contains no directed cycles), i. e., F (M, 0) = {0},

• and, in general, contains infinitely many solutions.

1
A set X is closed if it contains all its limit points.

2
A set X is a polyhedron if it is defined by a finite number of affine (in)equalities, i.e., X = {x : Ax ≥ b}.

3
A set X is convex if for any two points x, y ∈ X and any real scalar λ ∈ [0, 1], λx + (1 − λ)y ∈ X .

4
A set X is bounded if it is contained in some ball around the origin, i.e., X ⊂ Br (0) for some r > 0.
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Minimum cost flow problem

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: c = [c1, ... , cm ]T

min cTx

s. t. Mx = d

x ≥ 0

Capacitated minimum cost flow problem

z = [z1, ... , zm ]T maximum flow on each arc

min cTx

s. t. Mx = d

x ≤ z

x ≥ 0

Example: Shortest path5

• c “length” of each arc, e.g., c = 1 (number of hops metric)

• Shortest path from s to t : ds = 1, dt = −1, di = 0 ∀ i /= s, t

• Simultaneous shortest paths to t : dt = −n + 1, di = 1 ∀ i /= t

5
Not all flow solutions to these two problems describe shortest paths, but at least one does.

Chapter 5: Models — Flow problems 5-16



Minimum cost flow problem

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: c = [c1, ... , cm ]T

min cTx

s. t. Mx = d

x ≥ 0

Capacitated minimum cost flow problem

z = [z1, ... , zm ]T maximum flow on each arc

min cTx

s. t. Mx = d

x ≤ z

x ≥ 0

Example: Shortest path5

• c “length” of each arc, e.g., c = 1 (number of hops metric)

• Shortest path from s to t : ds = 1, dt = −1, di = 0 ∀ i /= s, t

• Simultaneous shortest paths to t : dt = −n + 1, di = 1 ∀ i /= t

5
Not all flow solutions to these two problems describe shortest paths, but at least one does.

Chapter 5: Models — Flow problems 5-16



Minimum cost flow problem

Uncapacitated minimum cost flow problem

Cost per unit flow on arcs: c = [c1, ... , cm ]T

min cTx

s. t. Mx = d

x ≥ 0

Solution approaches

• General purpose linear programming solver (Simplex, Interior point, etc.)

• Specialized algorithms (Dijkstra, Bellman-Ford, network simplex, etc.) exploiting graph structure and recursive structure of the optimal
solution (if available)
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Maximum s-t flow problem

Capacitated minimum cost flow problem

z = [z1, ... , zm ]T maximum flow on each arc with source vector ds = 1, dt = −1, di = 0 ∀ i /= s, t

max r

s. t. Mx = rd

x ≤ z

x ≥ 0

Solution approaches

• General purpose linear programming solver (Simplex, Interior point, etc.)

• Lagrangian duality approaches (selectively relax one constraint)

• Specialized algorithms (Ford-Fulkerson) exploiting graph structure and relation to min-cut
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Min-cut and its capacity

• An s–t cut is a subset of nodes S ⊂ N such that s ∈ S and t /∈ S.

• An arc (i, j) ∈ A crosses S if i ∈ S and j /∈ S.

• A(S) denotes all crossing arcs.

• The value of an s–t cut given the capacity vector z is defined as

v(S) =
∑

(i,j)∈A(S)

zij .

• The value of any s–t cut upper bounds the maximum s–t flow.

Max-flow min-cut theorem
The value of the minimum s–t cut equals the value of the maximum s–t flow, i.e.,

max{r : Mx = rd, 0 ≤ x ≤ z} = min{v(S) : S is s–t cut}.
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Min-cut and its capacity

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

1 5

2

3 4

• Incidence matrix, source vector, capacity vector:

M =

[
1 0 −1 0 0

−1 1 0 0 −1
0 −1 1 1 0
0 0 0 −1 1

]
d =

[ 1
0
0

−1

]
z =

[
1
1
1
1
1

]

• Max-flow:

max{r : Mx = rd, 0 ≤ x ≤ z} = 1

• Min-cut:

min{v(S) : S is s-t cut} = 1
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Minimum cost maximum s–t flow problem

Generalizes (uncapacitated) minimum cost and (capacitated) maximum flow s–t problem:

• Source and flow vector: d, x

• Capacity and cost vector: z, c

min cTx

s. t. Mx = d

x ≥ 0

x ≤ z

Special cases

• Maximum s–t flow (see tutorial)

• Minimum cost flow (capacitated z < ∞, uncapacitated z = ∞)
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Multicommodity flow problems

In contrast to single-commodity flow problems we now have multiple commodities, e. g. flows, that compete with each other:

• Commodities C = {1, ... , c},

• Source, flow, and cost vector of commodity k : dk , xk , ck

• Capacity shared across all commodities: z

The min-cost max-flow problem then reads as:

min
∑
k∈C

cT
k xk

s. t. Mxk = dk ∀k ∈ C

xk ≥ 0 ∀k ∈ C∑
k∈C

xk ≤ z
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Multicommodity flow problems

In contrast to single-commodity flow problems we now have multiple commodities, e. g. flows, that compete with each other:

• Commodities C = {1, ... , c},
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min
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cT
k xk

s. t. Mxk = dk ∀k ∈ C

xk ≥ 0 ∀k ∈ C∑
k∈C

xk ≤ z

Properties

• Flow conservation applies to all commodities individually

• Capacity is shared among all commodities
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Multicommodity flow problems

Optimality of a solution now even more depends on what is considered “optimal”:

• The previous definition is a joint optimization of the weighted sum rate
∑

k cT
k xk .

• This allows that commodities (flows) are assigned few or no resources at all.

• Fairness?

Additional constraints, e. g. assigning a minimum amount of resources for individual commodities, may amend the cost function.

Solution approaches

• General purpose linear programming solver

• Lagrangian duality approaches (selectively relax one constraint, mostly the capacity constraint which couples all flows)
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Chapter 5: Models

Networks as graphs

Flow problems

Multicast in networks

Store-forward multicast

Multicast tree-based forwarding

Multicast with network coding

Wireless Packet Networks

Chapter 5: Models 5-24



Multicast in networks

Multicast in networks as flow problems

• Multicast communication is identified by its terminal set T ⊂ N.

• We can consider one or multiple sources (there is no big difference from a theoretical perspective).

• Special cases:

• unicast (one source, one terminal)
• bidirectional communication (two nodes that are sources and terminals)
• broadcast (all nodes other than the source are terminals)

How is multicast treated in networks?

• Convert to unicasts
→ replicate packets at source and store-forward at all other nodes

• Allow replication at all nodes
→ multicast tree / Steiner tree based forwarding

• Allow coding at all nodes
→ network coding
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Store-forward multicast
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• The flows to the terminals are independent of each other.
• Capacity needs to be split among all flows.

max s–T flow problem:

• One commodity for each terminal t ∈ T
• Source vector dst such that dst ,s = 1, dst ,t = −1, and dst ,i = 0 otherwise
• Capacity vector z split among commodities

max r s. t. Mx t = rdst ∀t ∈ T

x t ≥ 0 ∀t ∈ T∑
t∈T

x t ≤ z

⇒ That is a multicommodity flow problem!
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Store-forward multicast
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• Optimal flow solutions
• x6 = [ 1 0 0 1 0 0 0 0 0 ]T

• x7 = [ 0 1 0 0 0 1 0 0 0 ]T

• Total flow which is capacity relevant
• x6 + x7 = [ 1 1 0 1 0 1 0 0 0 ]T

maximum multicast s–T flow = 1
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Multicast tree-based forwarding

• s–T multicast tree: a tree rooted at s such that there exists a directed path to each t ∈ T (arcs belong to at least one path).

• Unit flow on multicast tree delivers one unit (the same unit) of information to each terminal.
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• Example 1–{6, 7} multicast trees:

• (1, 2), (1, 3), (2, 6), (3, 7)
• (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
• (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
• (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
• (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
• (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
• (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

• Optimal solution is a superposition of those multicast trees
• subject to the capacity constraints but
• without explicit flow conservation law.
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Multicast tree-based forwarding

max s–T flow problem

• Multicast trees MTsT = {1, ... , K}
• Multicast tree incidence vector xk such that xk ,j = 1 if arc j is in the k -th multicast tree, otherwise xk ,j = 0

• One commodity for the multicast, no flow conservation constraint

• Capacity vector z split among all trees

max
∑

k∈MTsT

rk

s. t.
∑

k∈MTsT

rk xk ≤ z

rk ≥ 0 ∀k ∈ MTsT

Notes:

• Finding all multicast trees is a hard problem.

• In practice, heuristics that approximate optimal solutions are being used.
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Multicast tree-based forwarding
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• Trees in optimal solution
• (1, 2), (1, 3), (2, 6), (3, 7) x1 = [ 1 1 0 1 0 1 0 0 0 ]T

• (1, 2), (2, 4), (2, 6), (4, 5), (5, 7) x2 = [ 1 0 1 1 0 0 1 0 1 ]T

• (1, 3), (3, 4), (3, 7), (4, 5), (5, 6) x3 = [ 0 1 0 0 1 1 1 1 0 ]T

• Each tree carries rate 0.5.

• Total flow which is capacity relevant
• 0.5(x1 + x2 + x3) = [ 1 1 0.5 1 0.5 1 1 0.5 0.5 ]T

Maximum Multicast s–T Flow = 1.5
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Multicast with network coding

s
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• A single packet (coded unit of information) may serve multiple terminals simultaneously.

• Consider flow to each terminal separately.

• But capacity is shared among all flows, i. e., each flow can use the full capacity on each arc.

• Example (4, 5): flow s–t1 and s–t2 transmit unit of information over this arc, but only one coded packet is transmitted.
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Multicast with network coding

Network coding: Max s–T flow problem

• One commodity flow x t for each terminal t ∈ T

• Source vector dst for each terminal t ∈ T

• Capacity vector z is shared for all flows, i. e., capacity on each arc can be fully exploited by each commodity flow.

max r s. t. Mx t = rdst ∀t ∈ T

x t ≥ 0 ∀t ∈ T

x t ≤ z ∀t ∈ T

Note the difference:

• Capacity constraint must be fulfilled for individual flows only.

• There is no joint capacity constraint any more!
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Multicast with network coding
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• Optimal flow solutions
• x6 = [ 1 1 0 1 1 0 1 0 1 ]T

• x7 = [ 1 1 1 0 0 1 1 1 0 ]T

• Total flow which is capacity relevant
• max(x6 , x7) = [ 1 1 1 1 1 1 1 1 1 ]T

Maximum Multicast s–T Flow = 2
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Multicast with network coding

Comparison for Butterfly
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mode achievable capacity

store-forward 1.0
multicast tree 1.5
network coding 2.0

• Can we do even better?

No! Why?

Min-cut upper bound on multicast rate

• Find all s–T cuts S and their values v(S).

• The cut with v(S) minimal limits the maximum flow.
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Multicast with network coding

Max-flow min-cut theorem (reformulated)
The value of the minimum s–t cut for all terminals t ∈ T equals the value of the maximum s–T flow with network coding, i. e.,

max{r : Mx t = rdst , 0 ≤ x t ≤ z, ∀t ∈ T}

=
min
t∈T

min{v(S) : S is s–t cut}
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Chapter 5: Models

Networks as graphs

Flow problems

Multicast in networks

Wireless Packet Networks

Model 1: simple graph model with orthogonal medium access

Hypergraphs

Model 2: lossless hypergraph model with orthogonal medium access

Model 3: lossy hypergraph model with orthogonal medium access

Model overview
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Wireless Packet Networks
Wired vs. Wireless — Typical Properties

Wired Networks

• Most wired networks are composed from individual point-to-point links, which do not interact and share no resources on the physical
layer.

• Physical links are almost lossless and error-free.

• Wired networks can be modeled as abstract graphs with perfect capacitated links for throughput calculation.

Wireless Networks

• Wireless networks share a common transmission medium.

• The medium is shared and omnidirectional, which turns it into a broadcast medium and causes interference.

• Wireless transmissions are prone to errors leading to packet errors or packet loss.

• How can we model wireless networks? Graphs?

Note: There are wired networks that use broadcast media, such as good old Ethernet without switches. Are there other such networks in use today?
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Wireless Packet Networks

Packet Networks

• Information is encoded into packets, which are protected by an
• error correcting code on the physical layer (channel code) for removing inevitable transmission errors and an
• error detecting code (e. g. CRC) to detect any residual errors or decoding failures of the channel code, and

• have individual addressing information attached in order to route packets indepedently from source to destination.

Note: on point-to-point links there may be no need for addressing information, e. g. Serial Line Internet Protocol (SLIP).
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Wireless Packet Networks

Wireless Packet Networks

• Due the broadcast nature of wireless transmissions, elaborated schemes for medium access are needed:
• Simultaneous transmissions may cause interference.
• Without simultaneous transmissions resources may be wasted.
• Some kind of fairness should be provided.

⇒ Medium access needs to be organized (centrally or distributed).

• Transmitted packets are randomly lost, i. e., not decodable at the physical layer:
• Loss may be due to imperfections of wireless communication (channel fading, mobility, etc.).
• Loss may be also due to interference (packet collisions).

• Transmitted packets are not only received by one (intended) node but by multiple nodes (known as wireless broadcast advantage).
• Need to model selective overhearing of individual packets. Who gets which packet?
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Model 1: simple graph model with orthogonal medium access

• Ignore broadcast advantage, i. e., transmissions are ignored by all but the intended receiver.

• Modify arc capacities to consider
• medium access and interference, and
• packet losses.

Wireless network model

• Graph (N, A )

• Arc capacity vector z

• Region of admissible capacity vectors Z:
• Each z ∈ Z corresponds to a different trade-off between all arcs.
• Trade-off is necessary due to shared resources and interference.

Note: Compare to wired networks, where each arc capacity depends only on the properties of the underlying link.
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Model 1: simple graph model with orthogonal medium access

Assumptions

• Same code rate for all packets

• Equal and arbitrarily fine splitting of resources

• No simultaneous transmissions (orthogonal medium access)

• No interference

• Shared transmission time / frequency resources:
resource share τj of arc j s. t. total resource shares add up to 1

• Packet loss (due to fading / noise / mobility / . . . ):
packet loss probability εj ∈ [0, 1] on arc j (εj = 0 for all j means no packet loss)

Arc Capacity Region (NC or ACK/NACK)

Z =
⋃
τ≥0:

1Tτ≤1

{z : zj = τj (1 − εj )}
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Model 1: simple graph model with orthogonal medium access

Maximum s-t Flow

• Source vector dst

• Incidence matrix M

• Arc capacity region Z

max r s. t. Mx = rdst

x ≥ 0

x ≤ z

z ∈ Z

Maximum s-T multicast flow

• Source vector dst for all t ∈ T

• Incidence matrix M

• Arc capacity region Z

max r s. t. Mx t = rdst ∀t ∈ T

x t ≥ 0 ∀t ∈ T

x t ≤ z ∀t ∈ T

z ∈ Z
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Model 1: simple graph model with orthogonal medium access

Multicast max-flow min-cut theorem (model 1)
The value of the minimum s-T cut for all terminals t ∈ T equals the value of the maximum s-T flow with network coding, i. e., ,

max
{

r : Mx t = rdst , 0 ≤ x t ≤ z, ∀t ∈ T , z ∈ Z
}

=

max
z∈Z

min
t∈T

min

{
v(S) =

∑
j∈A (S)

zj : S is s-T cut

}
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Hypergraphs

Directed hypergraphs
A directed hypergraph G = (N, H) consists of a

• set of nodes N = {1, ... , n} and

• set of hyperarcs H = {1, ... , m} where
• each hyperarc j ∈ H represents an ordered pair (a, B) of
• of a source node a ∈ N and
• a subset of nodes B ⊂ N with a /∈ B.

We write j ≡ (a, B) ∈ H, similar to the notation of ordinary arcs and their indices.

Example:

All hyperarcs (a, B) ∈ H with a = 1:

• (1, {2}), (1, {3}), (1, {4})

• (1, {2, 3}), (1, {2, 4}), (1, {3, 4})

• (1, {2, 3, 4})

1

2

3

4

If a packet is sent over hyperarc j ≡ (a, B), then
• all nodes b ∈ B overhear an (identical) copy of that packet and
• no other node i /∈ B overhears that packet.
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Hypergraphs

The directed graph (N, A ) induced by hypergraph (N, H) consists of

• all arcs k ≡ (a, b) such that

• there exists j ≡ (a, B) ∈ H with b ∈ B.

For the induced graph we

• denote the set of arcs that is generated by hyperarc j by Aj and

• define the hyperarc-arc incidence matrix as

N = (n)jk =

{
1 if k ∈ Aj ,

0 otherwise.

Example:

j ∈ H (a, B) ∈ H Aj k ∈ A
1 (1, {2}) {(1, 2)} 1
2 (1, {3}) {(1, 3)} 2
3 (1, {4}) {(1, 4)} 3
4 (1, {2, 3}) {(1, 2), (1, 3)} 1,2
5 (1, {2, 4}) {(1, 2), (1, 4)} 1,3
6 (1, {3, 4}) {(1, 3), (1, 4)} 2,3
7 (1, {2, 3, 4}) {(1, 2), (1, 3), (1, 4)} 1,2,3
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Model 2: lossless hypergraph model with orthogonal medium access

• Hypergraph (N, H)

• One hyperarc per node (simplification), enumerated according to the node the hyperarc is originating at

• Inherits MAC properties from model 1 (orthogonal medium access)

• Each node gets a resource share τi ≥ 0 such that
∑

i∈N τi ≤ 1

• Packets transmitted on a hyperarc j ≡ (a, B) are received by all nodes b ∈ B

• No packets are lost
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Model 2: lossless hypergraph model with orthogonal medium access

Information flow in lossless hypergraphs (model 2)

• Information flow vector x on induced graph (N, A )

• Demand vector d and incidence matrix M

• Flow must be conserved on induced graph, i. e.,

Mx = d

• Hyperarc-arc incidence matrix N

• Receivers of a hyperarc get identical packets over this hyperarc

• Each piece of information can only be used once (by one node)

Nx ≤ z ⇔
∑
k∈Aj

xk ≤ zj ∀j ∈ H

• Lossless Hyperarc Capacity Region (NC)

Z =
⋃
τ≥0:

1Tτ≤1

{z : zj = τj}
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Model 2: lossless hypergraph model with orthogonal medium access

Hyperarc maximum s-t flow (routing/network coding)

• Source vector dst

• Incidence matrix M

• Hyperarc-arc incidence matrix N

• Hyperarc capacity region Z

max r s. t. Mx = rdst

x ≥ 0

Nx ≤ z

z ∈ Z

Hyperarc maximum s-T multicast flow (network coding)

• Source vector dst

• Incidence matrix M

• Hyperarc-arc incidence matrix N

• Hyperarc capacity region Z

max r s. t. Mx t = rdst ∀t ∈ T

x t ≥ 0 ∀t ∈ T

Nx t ≤ z ∀t ∈ T

z ∈ Z

Note

• We can use each hyperarc (packet) only once for each terminal.

• But we can use each hyperarc differently for each terminal.
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Model 2: lossless hypergraph model with orthogonal medium access

Hyperarc min-cut model

• An s-t cut is a subset of nodes S ⊂ N such that s ∈ S and t /∈ S.

• A hyperarc j ≡ (a, B) ∈ H crosses S if a ∈ S and B ̸⊂ S.
H(S) denotes all crossing arcs, and H(S) their indices.

• The value of any s-t cut upper bounds the maximum s-t flow.

• The value of an s-t cut given the capacity vector z is defined as

v(S) =
∑

j∈H(S)

zj =
∑

(a,B)∈H(S)

zaB

• Model 2 (only one hyperarc per node, zaB = τa ):

v(S) =
∑

(a,B)∈H(S)

τa .
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Model 2: lossless hypergraph model with orthogonal medium access

Multicast max-flow min-cut theorem (model 2)
The value of the minimum s-T cut for all terminals t ∈ T equals the value of the maximum s-T flow with network coding, i. e.,

max
{

r : Mx t = rdst , 0 ≤ x t , Nx t ≤ z, ∀t ∈ T , z ∈ Z
}

=

max
z∈Z

min
t∈T

min

{
v(S) =

∑
j∈H(S)

zj : S is s-T cut

}
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Model 3: lossy hypergraph model with orthogonal medium access

Idea: Use model 2 but

• account for packet erasures and

• allow different erasure probabilities to each neighbor.

⇒ one hyperarc per node is insufficient

Changes made to model 2:

• Hypergraph (N, H) with induced graph (N, A ).

• Let Na denote the set of neighbors of node a ∈ N.

• For each node a ∈ N consider all possible hyperarcs j ≡ (a, B) for any B ⊂ Na .

• Packet loss is independent across all receivers (simplification).

• Packets from a to b are lost with probability εk where k ≡ (a, b), i. e., k ∈ A is an arc index of the induced graph.

• A packet transmitted by a ∈ N is transmitted on hyperarc j ≡ (a, B), i. e., it is received precisely by B ⊂ Na and lost by all other nodes
Na \ B, with probability

Pr[“no loss on j ≡ (a, B)” | “a transmits”] =
∏
b∈B

(1 − εab )
∏
b /∈B

εab .
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Model 3: lossy hypergraph model with orthogonal medium access

Information flow in lossy hypergraphs (model 3)

• Information flow vector x on induced graph (N, A ).

• Flow must be conserved on induced graph, i. e., Mx = d.

• Receivers of a hyperarc get identical packets over this hyperarc provided they have not lost the packets.

Given a transmitter a, we are interested in an upper bound for the flow from a to a set of receivers B ⊂ Na (where Na denotes the
neighborhood of node a).

• Each piece of information can only be used by one successful receiver.

• The total flow from a to B must not exceed the total amount of different received packets of this set of nodes.

This is equivalent to the probability that

• node a is transmitting at all and

• at least one node b ∈ B overhears the transmission.

It does not matter whether or not more than one or which specific node in B overhears the transmission.
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Model 3: lossy hypergraph model with orthogonal medium access

For a 1-receiver set B = {b} and induced arc k ≡ (a, b):

• Which hyperarcs may transport packets from a to b?

Any hyperarc j′ ≡ (a, B′) with b ∈ B′, and precisely these hyperarcs induce arc k ≡ (a, b).

⇒ Consider all (a, B′) ≡ j′ ∈ H : (a, b) ≡ k ∈ Aj′ . 1

2

3

4

Figure 1: Example for a = 1 and b = 4, only hyperarcs
j′ ∈ H : k ∈ Aj′ are shown

• Packets may be transferred over any of these hyperarcs (a, B′) ≡ j′, but only if node a is transmitting at all.

• What is the probability that a packet transmitted over j′ ≡ (a, B′) is successfully received by precisely B′ ⊂ N?

• Since all b′ ∈ B′ must receive the packet, none of the arcs (a, b′) ∈ Aj′ induced by hyperarc j′ ≡ (a, B′) must fail, and
• no other induced arc originating at a must succeed.

⇒ Flow bound:

xk = xab ≤

∑
(a,B′ )≡j′ :
(a,b)∈Aj′

τa

∏
b′∈B′

(1 − εab′ )
∏

b′ /∈B′

εab′ = yaB = yj
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Model 3: lossy hypergraph model with orthogonal medium access

For a 2-receiver set B = {b1, b2} and induced arcs k1 ≡ (a, b1) and k2 ≡ (a, b2):

• Which j′ ∈ H may transport packets to either b1 or b2?

Any hyperarc j′ ≡ (a, B′) with B′ ∩ B /= ∅, and precisely these hyperarcs induce either k1, k2, or
both.

⇒ Consider all (a, B′) ≡ j′ ∈ H : {k1, k2} ∩ Aj′ /= ∅.
1

2

3

4

Figure 2: Example for a = 1 and B = {2, 4}; shaded hyperarcs are
for B′ = {4}, solid hyperarcs are the additions for B = B′ ∪ {2}

• Packets may be transferred over any of these hyperarcs (a, B′) ≡ j′, but only if a is transmitting at all.

• What is the probability that a packet transmitted over j′ ≡ (a, B′) is successfully received by precisely B′ ⊂ N?
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b′ /∈B′

εab′ = yaB = yj
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Model 3: lossy hypergraph model with orthogonal medium access

Generalization to multiple receiver sets:

• Each pair (a, B) corresponds to some hyperarc j, i. e., j ≡ (a, B).

• That hyperarc induces the set Aj of arcs.

• The flow bound is determined by all hyperarcs j′ ∈ H : Aj ∩ Aj′ /= ∅:∑
k∈Aj

xk =
∑

(a,b)∈Aj

xab ≤
∑

(a,B′ )≡j′ :
Aj ∩Aj′ /=∅

τa

∏
b′∈B′

(1 − εab′ )
∏

b′ /∈B′

εab′ = yaB = yj

• Hyperarc capacity:

zj = zaB = τa

∏
b∈B

(1 − εab )
∏
b /∈B

εab

• Hyperarc capacity region:

Z =
⋃
τ≥0

1Tτ≤1

{
z : zj = zaB = τa

∏
b∈B

(1 − εab )
∏
b /∈B

εab ∀j ≡ (a, B) ∈ H
}
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Model 3: lossy hypergraph model with orthogonal medium access

Information flow in lossy hypergraphs (model 3)

• Reformulation of the lossy flow bound (for all receiver set):∑
k∈Aj

xk ≤ τa

(
1 −

∏
k∈Aj

εk

)
= yj ∀j ≡ (a, B) ∈ H

• Broadcast capacity region

Y =
⋃
τ≥0

1Tτ≤1

{
y : yj = τa

(
1 −

∏
k∈Aj

εk

)
∀j ≡ (a, B) ∈ H

}
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Model 3: lossy hypergraph model with orthogonal medium access

Information flow in lossy hypergraphs (model 3)

• Hyperarc-arc incidence matrix

N = (Njk ) =

{
1 if k ∈ Aj

0 otherwise

• Hyperarc-hyperarc incidence matrix

Q = (Qij ) =

{
1 if Ai ∩ Aj /= ∅
0 otherwise

• Hyperarc-to-broadcast transformation

y = Qz

• Lossy hyperarc flow bound with hyperarc capacity region

Nx ≤ Qz

• Lossy hyperarc flow bound with broadcast capacity region

Nx ≤ y
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc maximum s-t flow (opportunistic RT/NC)

• Source vector dst

• Incidence matrix M

• Hyperarc-arc incidence matrix N

• Broadcast capacity region Y

max r s. t. Mx = rdst

x ≥ 0

Nx ≤ y

y ∈ Y

Lossy hyperarc maximum s-T multicast flow (NC)

• Source vector dst

• Incidence matrix M

• Hyperarc-arc incidence matrix N

• Broadcast capacity region Y

max r s. t. Mx t = rdst ∀t ∈ T

x t ≥ 0 ∀t ∈ T

Nx t ≤ y ∀t ∈ T

y ∈ Y
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

• An s-t cut is a subset of nodes S ⊂ N such that s ∈ S and t /∈ S.

• A hyperarc j ≡ (a, B) ∈ H crosses S if a ∈ S and B ̸⊂ S, i. e., B ∩ (N \ S) /= ∅.

• H(S) denotes all crossing hyperarc indices, H(S) all crossing hyperarcs.

• The value of any s-t cut upper bounds the maximum s-t flow.

• The value of an s-t cut given the capacity vector z is defined as

v(S) =
∑

j∈H(S)

zj .

• Cut value of model 3:

v(S) =
∑

(a,B)∈H(S)

τa

∏
b∈B

(1 − εab )
∏
b /∈B

εab .

• Aa (S): Set of arcs (a, b) ∈ A : b ∈ N \ S
(Aa (S) denotes index set of crossing arcs)

• Ha (S): Set of hyperarcs (a, B) ∈ H : B ∩ (N \ S) /= ∅
(Ha (S) denotes the index set of crossing hyperarcs)
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

• Characterize H(S):

H(S) = {(a, B) ∈ H : a ∈ S, B ∩ (N \ S) /= ∅}

=
⋃
a∈S

Ha (S)

=
⋃
a∈S

{(a, B) ≡ j ∈ H : Aj ∩ Aa (S) /= ∅}

• Cut value of Model 3 (looks very much like flow bound):

v(S) =
∑
a∈S

∑
j≡(a,B):

Aj ∩Aa (S) /=∅

τa

∏
b∈B

(1 − εab )
∏
b /∈B

εab
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Model 3: lossy hypergraph model with orthogonal medium access

Lossy hyperarc min-cut model

• Flow bound: ∑
k∈Aj

xk ≤
∑

j′≡(a,B′ ):
Aj ∩Aj′ /=∅

τa

∏
b′∈B′

(1 − εab′ )
∏

b′ /∈B′

εab′ = yj ∀j ≡ (a, B) ∈ H

∑
k∈Aj

xk ≤ τa

(
1 −

∏
k∈Aj

εk

)
= yj ∀j ≡ (a, B) ∈ H

• Cut value of model 3:

v(S) =
∑
a∈S

∑
j≡(a,B):

Aj ∩Aa (S) /=∅

τa

∏
b∈B

(1 − εab )
∏
b /∈B

εab

v(S) =
∑
a∈S

τa

(
1 −

∏
k∈Aa (S)

εk

)
=

∑
j≡(a,B)∈H:

a∈S∧B=Na \S

yj
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Model 3: lossy hypergraph model with orthogonal medium access

Multicast max-flow min-cut theorem (model 3)
The value of the minimum s-t cut for all terminals t ∈ T equals the value of the maximum s-T flow with network coding, i. e.,

max
{

r : Mx t = rdst , 0 ≤ x t , Nx t ≤ y, ∀t ∈ T , y ∈ Y
}

=
max
y∈Y

min
t∈T

min

{
v(S) =

∑
j≡(a,B)∈H:

a∈S∧B=Na \S

yj : S is s-t cut
}
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Model overview
Section 1: Model 1 – lossy non-hypergraph model

• Reflects lossy wired networks

• Cannot intuitively cope with broadcast media

• Flow bound: x ≤ z Z =
⋃

τ≥0∧1Tτ≤1

{z : zk = τk (1 − εk ) ∀k ∈ A}

Section 3: Model 2 – lossless hypergraph

• Considers broadcast media by hyperarcs

• No losses, i. e., single hyperarc from some a ∈ N to all its neighbors b ∈ Na

• Flow bound: Nx ≤ z Z =
⋃

τ≥0∧1Tτ≤1

{z : zj = τj ∀j ∈ H}

Section 4: Model 3 – lossy hypergraph

• Considers broadcast media by hyperarcs

• Allows for losses, i. e., hyperarcs from a ∈ N to all subsets B ⊂ Na of neighbors

• Flow bound: Nx ≤ Qz = y Y =
⋃

τ≥0∧1Tτ≤1

{
y : yj = τa

(
1 −

∏
k∈Aj

εk

)
∀j ≡ (a, B) ∈ H

}

Note: Model 1 ⊂ Model 2 ⊂ Model 3
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