Chair of Distributed Systems and Security
ion, Information and Technology
Technical University of Munich

Network Coding (NC)

CITHN2002 — Summer 2024

Prof. Dr.-Ing. Stephan Giinther

Chair of Distributed Systems and Security
School of Computation, Information and Technology
Technical University of Munich

Chapter 2: libmoep

What is 1ibmoep?

How is it implemented?

moep 80211 frame format
Blocking interfaces

Handling other file descriptors

1ibmoepcommon
The Linux kernel’s list
Timeouts
Working with struct timespec

Logging and debugging

Chapter 2: libmoep

21

Chapter 2: libmoep

What is 1ibmoep?

Chapter 2: libmoep

22

What is 1ibmoep? TI.ITI

libmoep' is a library written in C that allows to inject

e cooked IEEE 802.11 frames (native mode),

e frames based on a proprietary, extensible frame format (moep 802.11) to develop and evaluate custom link-layer protocols and
e various other frametypes, and

e it supports various interfaces (WLAN, Ethernet, TAP, Unix sockets).

" It has been primarily developed by Maurice Leclaire, a former staff member of the chair.
Chapter 2: libmoep — What is 1ibmoep?

23

What is 1ibmoep? TI.ITI

libmoep' is a library written in C that allows to inject

e cooked IEEE 802.11 frames (native mode),

e frames based on a proprietary, extensible frame format (moep 802.11) to develop and evaluate custom link-layer protocols and
e various other frametypes, and

e it supports various interfaces (WLAN, Ethernet, TAP, Unix sockets).

Why not opening raw sockets?

" It has been primarily developed by Maurice Leclaire, a former staff member of the chair.
Chapter 2: libmoep — What is 1ibmoep?

23

What is 1ibmoep?

libmoep' is a library written in C that allows to inject

e cooked IEEE 802.11 frames (native mode),

e frames based on a proprietary, extensible frame format (moep 802.11) to develop and evaluate custom link-layer protocols and

e various other frametypes, and
e it supports various interfaces (WLAN, Ethernet, TAP, Unix sockets).

Why not opening raw sockets? ...1ibmoep uses raw sockets but:

e it hides most of the complexity of
e creating monitor mode interfaces,
e setting interface parameters,
e parsing radiotap headers, etc.

e and allows a convenient way to pair a monitor interface with a TAP interface.

" It has been primarily developed by Maurice Leclaire, a former staff member of the chair.

Chapter 2: libmoep — What is 1ibmoep?

23

What is 1ibmoep?

Example: ptm

The ptm (PTM stands for packet transfer module) is

e the most simple kind of module using libmoep to
e relay packets by
accepting IEEE 802.3 frames over a virtual Ethernet interface (tap0),

converting those frames to a custom format suitable for wireless transmission,

sending those fr:

ames over a monitor interface and

translating incoming frames from the monitor interface back to valid IEEE 802.3 frames.

Application ! PTM
g |Applcat ' [taph() | [Tadn()
3 ' 7
w 1
5 I
@« 1
= 1
[0}
[}
©
2
[0]
x

Figure 1: PTM block diagram

wireless transmission>

PTM : Application

radn() | [taph() | ! PP 8
! Q.

1 7]

: oy

f (9]

' 5

(0]

o

©

o

w

T

c

e

Chapter 2: libmoep — What is 1ibmoep?

What is 1ibmoep?

Example: ptm

The TAP interface presents itself like a physical Ethernet device, i.e.,

e it has a MAC address and

® can be assigned IP(v6) addresses:

1 tap@: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

link/ether 06:36:10:3e:a8:b@ brd ff:ff:ff:ff:ff:ff

inet 10.0.0.1/24 brd 10.0.0.255 scope global tap@
valid_1ft forever preferred_1ft forever

inet6 fe80::436:10ff:fe3e:a8b0/64 scope link

Chapter 2: libmoep — What is 1ibmoep?

25

What is 1ibmoep?
Example: ptm

The TAP interface presents itself like a physical Ethernet device, i.e.,

e it has a MAC address and

® can be assigned IP(v6) addresses:

1 tap@: <BROADCAST ,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ...

2 link/ether 06:36:10:3e:a8:b0 brd ff:ff:ff:ff:ff:ff
3 inet 10.0.0.1/24 brd 10.0.0.255 scope global tap®
4 valid_1ft forever preferred_1ft forever
5 inet6 fe80::436:10ff:fe3e:a8b0/64 scope link
Advantages:

e Applications are completely unaware of the translation.
e |t works with any kind of traffic (even ARP).

e We have any control about the radio interface we can ever have without writing custom device drivers.

Chapter 2: libmoep — What is 1ibmoep?

25

Chapter 2: libmoep

How is it implemented?

Chapter 2: libmoep

26

How is it implemented?

1. Create tap and monitor devices:

2o 0o N o s wn

12
13
14
15

if (!(tap = moep_dev_ieee8023_tap_open(args.addr, &args.ip, 24,
args.mtu + sizeof(struct ether_header)))) {
fprintf(stderr, "ptm: error: %s\n", strerror(errno));

return -1;

if (!(rad = moep_dev_moep80211_open(args.rad, args.freq,

MOEP80@211_CHAN_WIDTH_20,
@, 0, args.mtu + radiotap_len(-1) +
sizeof (struct moep80211_hdr) +
sizeof (struct moep_hdr_pctrl)))) {

fprintf(stderr, "ptm: error: %s\n", strerror(errno));

moep_dev_close(tap);

return -1;

2. Set rx_handler for both devices that will be used as callbacks upon frame arrival:

moep_dev_set_rx_handler (tap, taph);
moep_dev_set_rx_handler(rad, radh);

3. Pair both devices and turn control to 1ibmoep:

moep_dev_pair (tap, rad);
moep_run(sigh, NULL);

Chapter 2: libmoep — How is it implemented?

27

How is it implemented?

e The call to moep_run() turns control to 1ibmoep.
e The internal event loop is essentially a wrapper for epoll.
e Depending on which interface a frame is received, the appropriate handler is called:

e [f aframe arrives at the TAP interface, taph() is called and the received frame is passed to this handler.
® The handler can translate the frame to a suitable format and schedule it for transmission on the radio interface.

Chapter 2: libmoep — How is it implemented?

28

How is it implemented?

e The call to moep_run() turns control to 1ibmoep.
e The internal event loop is essentially a wrapper for epoll.
e Depending on which interface a frame is received, the appropriate handler is called:

e [f aframe arrives at the TAP interface, taph() is called and the received frame is passed to this handler.
® The handler can translate the frame to a suitable format and schedule it for transmission on the radio interface.

Do we have to turn complete control over to 1ibmoep?

e Of course not.
e There is moep_wait(), which works just like epoll_wait() but still supports rx_handlers.
® You can even configure 1ibmoep to use another custom epoll_wait() compatible function internally.

However, you will probably never need that.

Chapter 2: libmoep — How is it implemented?

28

Chapter 2: libmoep

moep 80211 frame format

Chapter 2: libmoep

29

moep 80211 frame format 'I'I.I'I'I

There are two different ways to create radio interfaces:

® moep_dev_ieee80211_open()

e Frames passed to the rx_handler will be ordinary IEEE 802.11 frames, including their link-layer headers.
o The radiotap header will be a moep8@211_radiotap since ieee8211_radiotap sucks.'

® moep_dev_moep80211_open()

e Frames passed to the rx_handler will be in a custom format that is based on the generic IEEE 802.11 header for data frames.
® The radiotap header is again moep80211_radiotap.

There are more functions to open/create TAP and Ethernet interfaces (and even Unix sockets).

In all cases, a frame is represented by the type moep_frame_t, which is a typedef of a pointer to a struct moep_frame.

e The members of this struct are an implementation detail and not accessible.
® You cannot modify a moep_frame_t directly, use the interface functions.

" The difference between moep80211_radiotap and ieee80211_radiotap is basicalle that the former one is fully expanded, i e., all options allocate memory even if the present mask does not specify them.
Chapter 2: libmoep — moep80211 frame format 210

moep 80211 frame format
Getting the headers of a moep_frame_t:

// Returns the radiotap header

struct moep80211_radiotap *moep_frame_radiotap(moep_frame_t frame);

// Returns the IEEE80211 header (generic format, your have to parse it)
struct ieee80211_hdr_gen #*moep_frame_ieee80211_hdr (moep_frame_t frame);
// Returns the moep80211_hdr common to all our custom frames

struct moep80211_hdr *moep_frame_moep80211_hdr (moep_frame_t frame);

// Returns the IEEE802.3 header (in case of Ethernet frames)

struct ether_header *moep_frame_ieee8023_hdr (moep_frame_t frame);

® N e s =

Transmit a frame:

1 int moep_dev_tx(moep_dev_t dev, moep_frame_t frame);

If you want to convert a moep_frame_t to a buffer or create a moep_frame_t from a buffer, you can use the following functions:

1 int moep_frame_encode(moep_frame_t frame, u8 *xbuf, size_t buflen);
2 int moep_frame_decode(moep_frame_t frame, u8 *buf, size_t buflen);

If you want to transmit a manually created frame from a buffer, you may also use:

1 int moep_dev_tx_raw(moep_dev_t dev, u8 xbuf, size_t buflen);

Chapter 2: libmoep — moep80211 frame format

2-11

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE8Q211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulé txseq;

8 ul6 seq_ctrl; /* unused/reserverd */
9 } __attribute__((packed));

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE80211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulb txseq;

8 ul6 seq_ctrl; /x unused/reserverd =%/
9 } __attribute__((packed));

® frame_control has the same meaning as for ordinary IEEE 802.11 frames.
e We set it to FTYPE_DATA | STYPE_DATA for all of our frames to avoid unexpected behavior of hardware.

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE8Q211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulé txseq;

8 ul6 seq_ctrl; /* unused/reserverd */
9 } __attribute__((packed));

e duration_id may be interpreted by other STAs.
e We set it to zero for now.

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE80211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulb txseq;

8 ul6 seq_ctrl; /x unused/reserverd =%/
9 } __attribute__((packed));

® rais the 6 B receiver address of this frame.
e |f we exploit the wireless broadcast advantage, we set it to the MAC broadcast address.

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE80211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulb txseq;

8 ul6 seq_ctrl; /x unused/reserverd =%/
9 } __attribute__((packed));

® tais the 6 B transmitter address of this frame.
e This is not the MAC of our wireless interface but of the tap interface. Think about it!

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

struct moep80211_hdr {

ul6 frame_control;

ul6 duration_id;

u8 ra[IEEE80211_ALEN];

u8 ta[IEEE8Q211_ALEN];

u32 disc;

ulb txseq;

ul6 seq_ctrl; /x unused/reserverd =%/
} __attribute__((packed));

© BN o s N

e discis a 4B field that we call frame discriminator.
e In|EEE802.11 data frames this would be the third MAC address.
e We choose a value that should be invalid as MAC address.

e This way we can differentiate our own frames from normal IEEE 802.11 traffic.

Chapter 2: libmoep — moep80211 frame format

2-12

moep 80211 frame format 'I'I.I'I'I
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

1 struct moep80211_hdr {

2 ul6 frame_control;

3 ul6 duration_id;

4 u8 ra[IEEE80211_ALEN];

5 u8 ta[IEEE8Q211_ALEN];

6 u32 disc;

7 ulb txseq;

8 ul6 seq_ctrl; /x unused/reserverd =%/
9 } __attribute__((packed));

e txseq are the latter 2 B of the third MAC address in IEEE 802.11 data frames.
e We use it as per-node TX sequence number, e.g. to estimate erasure probabilities.

Chapter 2: libmoep — moep80211 frame format 212

moep 80211 frame format
The generic moep 80211 header

When not operating in native mode, all radio frames will have this common header:

struct moep80211_hdr {

ul6 frame_control;

ul6 duration_id;

u8 ra[IEEE80211_ALEN];

u8 ta[IEEE8Q211_ALEN];

u32 disc;

ulb txseq;

ul6 seq_ctrl; /x unused/reserverd =%/
} __attribute__((packed));

© BN o s N

® seq_ctrl is fragment number / sequence number of the normal IEEE 802.11 data frame header.

e Problem with this field is that the NIC’s driver may play with it.
e |tis safer to set it to zero and to ignore it on reception.

Chapter 2: libmoep — moep80211 frame format

2-12

moep 80211 frame format
Extension headers
We use extension headers to resemble different frame types, e. g. the packet control header:

o After the moep_hdr at least one extension header must follow.
e Bit 7 in the extension header’s type field indicates whether another extension header follows.
* Type and length field precisely specify the extension header, and allow anyone to skip unknown extension headers.

2B 2B 6B 6B 4B 2B 2B >2B

Q
|Frarne conlrol| unused | Receiver Address (RA) |Transmmer Address (TA) | Discriminator | TXseq | unused | ExtHdr | Payload
I

7777777777777777777 1 Zz
HdrType | HarLen | HarData
I

it 5bit 1B 0B-2538B

struct moep_hdr_pctrl {

1

2 struct moep_hdr_ext hdr;

3 ul6 type; // corresponding to the Ethertype

4 ul6 len; // explicit length of the frame's payload

5 } __attribute__((packed));

6

7 struct moep_hdr_ext {

8 ug type; // type of the extension header, e.g. MOEP_HDR_PCTRL
9 u8 len; // total length of the extension header

10 } __attribute__((packed));

Chapter 2: libmoep — moep80211 frame format

moep 80211 frame format 'I'I.I'I'I

How to add extension headers?

e Extension headers are part of the 12_header in the private struct moep_frame.
e How exactly extension headers are stored within a typedeffed moep_frame_t is not your business.

Chapter 2: libmoep — moep80211 frame format 214

moep 80211 frame format
How to add extension headers?

e Extension headers are part of the 12_header in the private struct moep_frame.

e How exactly extension headers are stored within a typedeffed moep_frame_t is not your business.

Just let 1ibmoep do it for you:

® moep_frame_add_moep_hdr_ext()
Add a new extension header to an existing frame.

® moep_frame_set_moep_hdr_ext()
Replace an existing extension header by a new one
® moep_frame_del_moep_hdr_ext()
Delete an extension header.
® moep_frame_moep_hdr_ext()
Get a pointer to a specific extension header (or NULL if it does not exist).

Chapter 2: libmoep — moep80211 frame format

2-14

Chapter 2: libmoep TI.IT'

Blocking interfaces

Chapter 2: libmoep 2-15

Blocking interfaces

As handlers must never perform blocking operations, we have to deal with the possibility that

e we read a frame from the TAP interface (taph()) but

e cannot write it to the monitor interface.

(The reverse way may occur in theory but is of no practical interest.)

Possible solutions:

1. Discard the packet
2. Buffer the packet

3. Do not read from the TAP interface in the first place, eventually leading to frame drops in the kernel

If we use random linear network coding, we have buffers and thus

e read from the TAP interface until our internal buffers are filled and
e block the TAP interface until we have free space again.

Chapter 2: libmoep — Blocking interfaces

2-16

Blocking interfaces TI-ITI

libmoep offers the possibility to “block” and “unblock” an interface with moep_dev_set_rx_status().

Normally, an interface should be “blocked” (receiving) in case another interface is blocking transmissions.
This event is signalled by 1ibmoep through a callback handler, which can be installed with
moep_dev_set_tx_status_callback().

In the ptm example this combination is automatically installed with moep_dev_pair().
In more complex scenarios involving buffers, we have to write our own callbacks handling the buffer status.

Note: This does not guarantee that no frames are dropped.

e The TAP interface buffers frames on its own, and will eventually drop frames under load.
e Linux does not guarantee that frames scheduled for transmission are indeed transmitted.

However: Once a frame is read using 1ibmoep, we can guarantee that it reaches its destination. But we have to ensure it ourselves.

Chapter 2: libmoep — Blocking interfaces 217

Chapter 2: libmoep TI.IT'

Handling other file descriptors

Chapter 2: libmoep 2-18

Handling other file descriptors

Example: tranmit beacon frames in regular time intervals

16
17
18
19

if ((bcn_timer = timerfd_create (CLOCK_MONOTONIC, TFD_NONBLOCK)) < @) {
fprintf(stderr, "ptm: error: %s\n", strerror(errno));
return -1;

interval.it_interval.tv_sec = args.beacon / 1000;
interval.it_interval.tv_nsec = (args.beacon % 1000) * 1000000;
interval.it_value.tv_sec = interval.it_interval.tv_sec;
interval.it_value.tv_nsec = interval.it_interval.tv_nsec;
if (timerfd_settime(bcn_timer, @, &interval, NULL)) {
fprintf(stderr, "ptm: error: %s\n", strerror(errno));
close(bcn_timer);
return -1;

if (!(bcn_callback = moep_callback_create(bcn_timer, send_beacon, NULL, EPOLLIN))) {
fprintf(stderr, "ptm: error: %s\n”, strerror(errno));
close(bcn_timer);
return -1;

e Create a timer_fd (file descriptor) bound to a monotonic clock (nonsettable monotonically increasing clock that measures time from

some unspecified point, not affected by leap seconds)
® Prepare a struct timespec (two 64 bit integers) representing the interval
e Set the timer’s interval
e Register the the timer and its callback in 1ibmoep

Chapter 2: libmoep — Handling other file descriptors

2-19

Chapter 2: libmoep TI-ITI

1ibmoepcommon
The Linux kernel’s list
Timeouts
Working with struct timespec

Logging and debugging

Chapter 2: libmoep 220

1libmoepcommon

libmoepcommon is not part of 1ibmoep, but a separate header-only library for common tasks:

e Modified version of the Linux kernel’s list implementation
e Implementation of timeouts using event file descriptors
e Macros to calculate sum/ difference between struct timespec instances

e Various small functions, e. g. to compare/test MAC addresses, hexdumps, logging, common math operations, etc.

It is part of the network coding module (NCM):

|-- benchmark.h

|-- list.h
timeout.h

|-- types.h

|-- util

| |-- alignment.h

Nt NS N
|
|

| |-- assertion.h
| |-- hexdump.h
| |-- log.h
| |-- mac.h

12 | |-- maths.h
| |-- timespec.h
|-- util.h

Chapter 2: libmoep — Libmoepcommon

221

The Linux kernel’s list

list.h contains a (slightly modified) version of the Linux kernel’s list.

e Your list elements are structs:

1 struct neighbor {

2 struct list_head list;

3 u8 hwaddr [IEEE80211_ALEN];
L

e Create a new list and a new element:

1 LIST_HEAD(nblist);
2 struct neighbor xnb = calloc(1, sizeof(struct neighbor));
3 list_add(&nb->list, &nblist);

e Search for an element in the list:

struct neighbor *cur;

1

2 list_for_each_entry(cur, &nblist, list) {

3 if (0 == memcmp(cur->hwaddr, hwaddr, IEEE8@211_ALEN))
4 return cur;

5 ¥

6 return NULL;

Chapter 2: libmoep — Libmoepcommon

The Linux kernel’s list TI-ITI

e Remove a given element from the list:

1 list_del(&nb->1list);
2 free(nb);

e Search for an element that shall be removed or remove multiple elements:

1 struct neighbor *cur, *tmp;

2 list_for_each_entry_safe(cur, tmp, &nblist, list) {
3 if (is_to_be_removed(cur)) {

4 list_del (&cur->list);

5 free(cur);

6 3

7 ¥

Warning: removing a list element while iterating with 1ist_for_each_entry invalidates list pointers. Use list_for_each_entry_safe
instead.

Chapter 2: libmoep — 1ibmoepcommon 223

Timeouts TI'ITI

timeout.h allows you to register a callback that is executed when the timeout times out.

e Atimeout is internally represented by:

struct timeout {

1

2 timer_t timerid; // internal timer id

3 struct sigevent sevp; // eventfd for notification

4 timeout_ch_t cb; // callback when the timeout times out
5 void xdata; // private data for the callback

};

e The callback must be given as function pointer of the following type:

1 typedef int (xtimeout_cb_t)(timeout_t, u32, void *);

e Create a new timeout:

1 if (@ > timeout_create(CLOCK_MONOTONIC, &logt, state_log_cb, NULL))
2 DIE("timeout_create() failed: %s", strerror(errno));
3 timeout_settime(logt, @, timeout_msec(LOG_INTERVAL,LOG_INTERVAL));

* To make sure timeouts are signalled, you need to pass a signal handler to moep_run.
® |nside that handler you have to handle SIGRTMIN.

® timeout_exec((void *)siginfo.ssi_ptr, siginfo.ssi_overrun);

Chapter 2: libmoep — Libmoepcommon

Timeouts TI'ITI

Looks complicated? Maybe, but we can

e create arbitrary timeouts (both one-shot and interva-based),
e perform (almost) arbitrary tasks in the timeout’s callback,
e and even have private data for a timeout readily available.

And it is much easier than creating and setting a timer_fd and registering the callback manually.
The behaviour of timeout_settime() differs depending on flags:

e With all flags cleared and

® NULL as new timeout value the timeout is cleared, or
e unconditionally set to the new timeout value.

e |f TIMEOUT_FLAG_SHORTEN is given, the new value takes effect only if it is smaller than the remaining time.
e |f TIMEOUT_FLAG_INACTIVE is given, the new value takes effect only if the timeout is currently inactive.

Note: Timeouts always use relative time values, i. e., the time to the next event is given, not the absolute point in time when the event should
be triggered. We must keep that in mind since a timeout may not be handled immediately (there is some processing time). Therefore, we
might end up with a clock skew when repeating time intervals.

Chapter 2: libmoep — 1ibmoepcommon 225

Working with struct timespec

Time values are represented by:

struct timespec
long tv_sec;
long tv_nsec

X

{

/% seconds x/

/% nanoseconds */

Adding or subtracting time values is extremely prown to errors. Instead, you may use:

® N e o s n =

10
11
12
13
14

/* Add a and b,
timespecadd(&a,

/% Subtract a an
timespecsub (&a,

/* Get maxmimum of a and b,

timespecmax (&c,

storing result in a #/

&b);

d b,
&b);

&a,

storing result in a %/

&b);

storing result

/* Create timespec of x milliseconds */

timespecmset (&a,

x);

/* Create timespec of x microseconds */

timespecuset (&a,

x);

in ¢ %/

Chapter 2: libmoep — Libmoepcommon

2-26

Logging and debugging TI.ITI

There are two macros for logging and debugging:

LOG(loglevel, const char *format, ...);

e Writes the format string to stderr, including filename and line number.
e Only messages whose log level is larger or equal to loglevel are printed, i. e., specify verbosity at compile time.

DIE(const char *format, ...);

e Primarly used as assertion.
e Prints the specified format string to stderr, including filename and line number.
e Immediately terminates the application.

Logging can be redirected to syslog if MOEP80211_LOG_USE_SYSLOG is set.

Chapter 2: libmoep — Libmoepcommon

227

	libmoep
	What is libmoep?
	How is it implemented?
	moep.1667em80211 frame format
	Blocking interfaces
	Handling other file descriptors
	libmoepcommon
	The Linux kernel's list
	Timeouts
	Working with struct timespec
	Logging and debugging

