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Problem 1 Finite fields (12 credits)

Given the finite field Fp , we consider the finite extension field

Fq[x] =

{
n−1∑
i=0

aix i | ai ∈ Fp

}
. (1.1)

a)* State the conditions on p, q, and n such that a finite field Fq[x] exists.

p prime, n ∈ N, and q = pn

b)* Reason why there is an extension field for p = 4 and n = 4.

There is a finite field F4 with four elements that can be used to create an extension field.

We now consider the binary extension field F256 with the reduction polynomial r(x) = x8 + x4 + x3 + x + 1, and the two
elements a(x) = x7 + x + 1 and b(x) = x5 + 1.

c)* Determine the product a(x) · b(x) in the given field using polynomial division.

a(x) · b(x) = (x12 + x7 + x6 + x5 + x + 1) mod (x8 + x4 + x3 + x + 1) = x6 + x3

d)* Discuss the disadvantages of the polynomial division with respect to performance when naively implemented.

Since there may be up to 7 iterations where each intermediate result depends on previous results, the
polynomial division cannot be implemented efficiently.
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Figure 1.1 shows the log and alog tables for the given field, which is also known from the lecture.
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(b) Alog

Figure 1.1: Log and alog table for GF(256)

e)* Explain the log table approach.

a · b = A[L[a] + L[b]]

f) Determine the product of a′(x) = x2 + x and b ′(x) = x6 + x4 + x + 1 using the log table approach.

a′(x) = 0xdd ⇒ L[a] = 0x1a

b ′(x) = 0x53 ⇒ L[b] = 0x30

(L[a] + L[b]) mod 0xff = 0x4a

A[0x4a] = 0xf1 = x7 + x6 + x5 + x4 + 1

g) State an advantage and a disadvantage of the log table approach with respect to efficiency.

Advantage: result with 3 memory lookups and one addition.
Disadvantage: lookups cannot be parallelized.
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Problem 2 Metrics (12 credits)

We consider the wireless network depicted in Figure 2.1 consisting of nodes N = (s, 1, 2, t). Per-node packet erasure
probabilities are given ∀i, j ∈ N as 0 ≤ ϵij ≤ 1 and i ̸= j. Erasures are assumed to be indepentently and identically
distributed.

s

1

2

t

ETX distance

Figure 2.1: Wireless network, all hyperarcs are assumed to exist.

a)* Briefly explain the ETX distance between s and t .

Expected amount of packets transmitted in the network per packet generated at s such that it is received
by t .

b)* Argue which distribution the individual terms of the ETX metric adhere to.

Geometric distribution, as it models a waiting problem (retries until success) for independent retries.

In the following, we want to derive the amount of packets individual nodes have to transmit per source packet. To
this end, we need the

Rj =
∑
i>j

zi(1 − ϵij), (2.1)

Lj =
∑
i>j

zi(1 − ϵij)
∏
k<j

ϵik

 , and (2.2)

zj =
Lj

1 −
∏

k<j ϵjk
. (2.3)

c)* Explain Rj as given in (2.1).

Rj is the expected number of packets node i receives from nodes with higher ETX distance per source
packet.
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d)* Derive Rj for j ∈ {1, 2, t}. Note that Rs = 1.

R1 = zs(1 − ϵs1)

R2 = zs(1 − ϵs2) + z1(1 − ϵ12)

R3 = zs(1 − ϵst ) + z1(1 − ϵ1t ) + z2(1 − ϵ2t )

e) Explain Lj as given in (2.2).

Lj is the number of packets node j receives from nodes with higher ETX distance under the condition that no
node closer to the destination also receives the packet.

f)* Derive Lj for j ∈ N.

Ls = 1 (per definition)
Lt = 0 (for obvious reasons)
L1 = zs(1 − ϵs1)ϵs2ϵst

L2 = zs(1 − ϵs2)ϵst + z1(1 − ϵ12)ϵ1t

g)* Explain zj as given in (2.3).

zj is the number of packets node j has to transmit per source packet.

h) Derive zj for j ∈ N.

zt = 0 (for obvious reasons)

zs =
Ls

1 − ϵs1ϵs2ϵs3

z1 =
L1

1 − ϵ12ϵ1t

z2 =
L2

1 − ϵ2t
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Problem 3 Network coding in lossy wireless packet networks (22 credits)

We consider the network depicted by the hypergraph G = (N, H) in Figure 3.1. Note that only maximum hyperarcs
are drawn.

1

2

3

4

Figure 3.1: Hypergraph of example network, only maximum hyperarcs are drawn

We assume that packet losses, i. e., erasure events, are independently and identically distributed. Resource shares
are denoted by 0 ≤ τi ≤ 1 for all i ∈ N. We further assume othrogonal medium access, i. e., nodes to not transmit
concurrently.

a)* Draw the induced graph G′ = (N, A ) and number the arcs in lexicographic order.
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(a, B) ∈ H j ≡ (a, B) zj yj

(1,{2}) 1 τ1(1 − ϵ1)ϵ2ϵ3 τ1(1 − ϵ1)

(1,{3}) 2 τ1(1 − ϵ2)ϵ1ϵ3 τ1(1 − ϵ2)

(1,{4}) 3 τ1(1 − ϵ3)ϵ1ϵ2 τ1(1 − ϵ3)

(1,{2,3}) 4 τ1(1 − ϵ1)(1 − ϵ2)ϵ3 τ1(1 − ϵ1ϵ2)

(1,{2,4}) 5 τ1(1 − ϵ1)(1 − ϵ3)ϵ2 τ1(1 − ϵ1ϵ3)

(1,{3,4}) 6 τ1(1 − ϵ2)(1 − ϵ3)ϵ1 τ1(1 − ϵ2ϵ3)

(1,{2,3,4}) 7 τ1(1 − ϵ1)(1 − ϵ2)(1 − ϵ3) τ1(1 − ϵ1ϵ2ϵ3)

(2,{4}) 8 τ1(1 − ϵ4) τ2(1 − ϵ4)

(3,{4}) 9 τ3(1 − ϵ5) τ3(1 − ϵ5)

Table 3.1: Solution table for Problems b) to d)
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b)* List all hyperarcs (a, B) ∈ H in lexicographic order and assign arc indices j ≡ (a, B) in Table 3.1.

c) Determine the network’s hyperarc capacity region (Table 3.1).

d) Determine the network’s broadcast capacity region (Table 3.1).

We now consider an unicast session between Node 1 and Node 4.

e) List all s − t cuts.

S1 = {1}, S2 = {1, 2}, S3 = {1, 3}, S4 = {1, 2, 3}

f) Derive the value of each s − t cut.

v(S1) = y7 =
7∑

i=1

zi = τ1(1 − ϵ1ϵ2ϵ3)

v(S2) = y6 + y8 = z1 + z3 + z4 + z5 + z6 + z7 + z8 = τ1(1 − ϵ2ϵ3) + τ2(1 − ϵ4)

v(S3) = y5 + y9 = z1 + z2 + z4 + z5 + z6 + z7 + z9 = τ1(1 − ϵ1ϵ3) + τ3(1 − ϵ5)

v(S4) = y3 + y8 + y9 = z3 + z5 + z6 + z7 + z8 + z9 = τ1(1 − ϵ3) + τ2(1 − ϵ4) + τ3(1 − ϵ5)

We now assume that ϵ5 ≥ ϵ3 ∧ ϵ4 < ϵ3 ∧ ϵ1 < 1.

g)* Reason which nodes participate in forwarding traffic.

Node 3 cannot participate since ϵ5 > ϵ3, i. e., even of Node 3 has overheard a packet from Node 1, it is still
better for Node 1 to retransmit as it as a higher probability to reach Node 4.
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h) Given the conditions above, restate the cut values.

Since τ3 = 0, the cut values simplifie to:

v(S1) =
7∑

i=1

zi = τ1(1 − ϵ1ϵ2ϵ3)

v(S2) = τ1(1 − ϵ2ϵ3) + τ2(1 − ϵ4)

v(S3) = τ1(1 − ϵ1ϵ3)

v(S4) = τ1(1 − ϵ3) + τ2(1 − ϵ4)

i) Reason which cuts are binding?

We have that v(S3) < v(S1) and v(S4) < v(S2). Therefore, v(S3) and v(S4) are binding.

j) Determine τi for all i ∈ N in that case.

Since τ3 = 0 we have that τ2 = 1 − τ1

v(S3) = v(S4)

τ1(1 − ϵ1ϵ3) = τ1(1 − ϵ3) + (1 − τ1)(1 − ϵ4)

τ1 =
1 − ϵ4

1 − ϵ4 + ϵ3(1 − ϵ1)
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Problem 4 Quiz (14 credits)

The following subproblems can be solved independently of each other.

a)* Assuming a file is available at three nodes. A fourth node requests the file. Each of the three nodes transmits
a random linear combination (uniformely and identically distributed) using XOR only. Determine the decoding
probability at the fourth node assuming that no packets are lost.

p =
(

1 − 1
1 − 23

) (
1 − 1

1 − 22

) (
1 − 1

1 − 21

)
≈ 33 %

b)* The IEEE 802.11 header has (up to) four address fields. Briefly explaint the usage of those fields.

Transmitter, receiver, source, and destination (cmp. link layer routing).

c)* Given a IEEE 802.11-based network. Explain the tradeoff between packet errors and frame size with respect to
media access.

Smaller packets decrease error probability. However, media access is most expensive which is why we use
rather large packets albeit increasing error probability.

d)* A IEEE 802.11-based network under good conditions has about 2 % packet loss at the PHY. Explain (1) why
TCP has problems with such kind of packet loss and (2) why TCP still works fine in that case.

(1) TCP interprets any loss as congestion and reduces TX speed, (2) the MAC layer compensates for losses
by using link layer acknowledgements.

e)* Given the incidence matrix M of network. Determine rankM.

Number of nodes - 1
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f)* Given the incidence matrix M of network. Explain the intuition behind rank null M.

Number of linearly independent cycles in a graph.

g)* Given a fully connected wireless network with n nodes. Determine the total amount of possible hyperarcs.

Per node we have up to 2n−1 − 1 hyperarcs and thus n · (2n−1 − 1) possible hyperarcs in total.

h) Assuming that the link layer exposes a packet loss rate of 5 % to the network layer. Explain the effect on TCP.

TCP assumes that any segment loss is due to congestion.It would therefore inadvertently decrease its
sending window and therefore throtlle data rate.

i) Describe the hidden station problem.

In a three-node line network, the two outer nodes might be out of range of each other (thus hidden) but may
cause collisions at the inner node.
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike out
invalid solutions.
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